

Survey of Cryptanalysis on Hash Functions

Xiaoyun Wang

Tsinghua University

Outline

- Design of hash functions
- Earlier cryptanalysis on hash functions
- Recent advances in hash functions cryptanalysis
- SHA-3 competition candidates
- Conclusions

Part I

Design of Hash Functions

Development of Hash Functions

- 1953, IBM discussion
 - Confuse the file keywords
 - Construct the hash table used to computer searching and memory
- 1979, one way hash function, Merkle
 - Hard to find preimage
 - Hard to find second preimage
 - Guarantee secure authentication serve

- Davies, Price, hash functions used to digital signatures, Technical Report, 1980
 - Destroy the algebraic structure of RSA signature to resist on the existential forgery attack:

 $S(M_1M_2) = S(M_1) S(M_2)$

- Improve the signature efficiency
- Signature of message *M* is computed as:

s=S(h(M))

h is the hash function

Hash Function is One of Fundamental Cryptographic Algorithms

- One of three fundamental cryptographic algorithms
- Three fundamental cryptographic algorithms: encryption, signature, hash function
- Widely used in the security of network and wireless communication

Hash Function is One of Fundamental Cryptographic Algorithms

For example, hash function is the key technique to design bit commitment

Design Principle of Hash Functions

Merkle-Damgård Meta Method, Crypto 89

• Given message with padding $M=(M_0, M_1, ..., M_{n-1})$, the hash value of *M* is computed as

$$H_0 = IV$$

 $H_i = f(H_{i-1}, M_{i-1}), \quad 0 < i < n+1$
 $h = H_n$

- Hash function with one-block length
- Secure hash functions, concluded by Preneel, 1993

 $\begin{aligned} \mathbf{Matyas-Meyer-Oseas} \\ H_{i} &= E_{H_{i-1}}(M_{i}) \oplus M_{i} \\ H_{i} &= E_{M_{i}}(H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{H_{i-1}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{H_{i-1}}(M_{i}) \oplus H_{i-1} \oplus M_{i} \\ H_{i} &= E_{H_{i-1}}(M_{i}) \oplus H_{i-1} \oplus M_{i} \\ H_{i} &= E_{H_{i-1}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(H_{i-1}) \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(H_{i-1}) \oplus H_{i-1} \\ Davies-Meyer \\ E_{M_{i} \oplus H_{i-1}}(M_{i}) \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(M_{i}) \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i}}(M_{i} \oplus H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(H_{i-1}) \oplus M_{i} \oplus H_{i-1} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(H_{i-1}) \oplus M_{i} \\ H_{i} &= E_{M_{i} \oplus H_{i-1}}(H_{i-1}) \oplus H_{i-1} \\ H_{i} &= E_{M_{i} \oplus$

Hash function with double(multi)-block length

- MDC-2, MDC-4,1990, Brachtl etc,
 - (MDC-2 ANSI X9.31 standard)
- Parallel Davies-Meyer, Lai, Massey, Eurocrypt 92
- GOST, Russia stardard

.

Dedicated Hash Functions

MDx family: proposed by Rivest

• MD4, Crypt 90

• MD5, RFC 1992

SHA family: proposed by NIST

• SHA-0, FIPS-180, 1993

• SHA-1, FIPS-180-1, 1995

• SHA-2 (SHA-256/384/512), FIPS-180-2, 2002

Dedicated Hash Functions

RIPEMD family

- RIPEMD: RIPE project, 1995
- RIPEMD-160: Dobbertin, Bosselaers, Preneel, 1996
- Some other hash functions
 - HAVAL, Tiger, Whirpool etc

Part II

Earlier Cryptanalysis on Hash Functions

Earlier Cryptanalysis on Hash Functions Based on Block Ciphers

- Mainly focus on the structure attack
- Many hash functions based on block ciphers are broken by Preneel et al., PH. D thesis, 2003
- The 12 secure structures are listed by Preneel: strong secure 8

Earlier Cryptanalysis on Dedicated Hash Functions

- Collision attack on MD4, Dobbertin, FSE 1996
 - Find a collision on MD4 with probability 2⁻²²
 - Differential attack and mathematical equations
- Not one way for 2-round MD4, Dobbertin, FSE 1998
- Not collision-free for 2-round RIPEMD, J. of Cryptology, 1998

Earlier Cryptanalysis on Dedicated Hash Functions

- Free-start collision of MD5, Boer and Bosselaers, Eurocrypto'93
 - Same message with two different initial values
 - Weak avalanche for the most significant bit
 - The differential path with high probability is successfully used to analyzing MACs based on MD5 (in 2005-2006 and 2009)
- Semi free-start collision of MD5, Dobbertin, Eurocrypt'96 Rump Session

Two different 512-bit messages with a chosen initial value

Earlier Cryptanalysis on Dedicated Hash Functions

SHA-0 differential attack, Chabaud, Joux, Crypto'98

- Two collision differential paths are found, and each path can be divided into 6-step local collisions
- Another SHA-0 attack in 1997 (Wang, in Chinese, not published)
 - Same collision paths by solving mathematical equations:
 2 solutions of 2⁵¹² message difference space
 - The theoretic support for SHA-1 cryptanalysis

Part III

Recent Advances in Hash Functions Cryptanalysis

Recent Collision Attack on Hash Functions (I)

Bit tracing to find the collision path for MD4

Recent Collision Attack on Hash Functions (1

Independently proposed collision attack with two message blocks for MD5, Wang and Yu at Crypto 04 Rump Session

- PS editor files with same signature, Lucks and Daum, Rump Session in Eurocrypt'05
 - R_1 and R_2 is a random collision pair
 - Editor software with redundancy

Other editor softwares PDF,TIFF and Word 97, Gebhardt et.al, NIST Hash Function Workshop 2005

- Colliding valid X.509 certificates
 - Lenstra, Wang, Weger, forged X.509 certificates, http://eprint.iacr.org/2005/067.pdf

Same owner with different public keys (2048 bits)

- Stevens, Lenstra, Weger, Eurocrypt 2007
 8192-bit public key (8-block collision)
- Stevens etc, Crypto 2009

Pass the browser authentication, different owners, different public keys

US-CERT: MD5 vulnerable to collision attacks

- Preimage attacks on hash functions, Leurent, FSE 2008
 - Partial pseudo preimage attack on the compression function of MD4. Choose 64-bit of the output for the cost of 2³² compression function computations
 - Preimage attack on compression function of MD4 with complexity 2⁹⁶
 - Attack on the full MD4 with complexity 2¹⁰² using birthday paradox and layered hash tree

- Aoki and Sasaki, preimage attacks on one-block MD4, 63-step MD5, SAC 2009
 - A preimage of one-block MD4 can be found with 2¹⁰⁷ MD4 computations
 - A preimage of MD5 reduced to 63 steps can be found with 2¹²¹ MD5 computations
- Sasaki and Aoki, preimage attack on full MD5, Eurocrypt 2009
 - Searches a pseudo-preimage with complexity 2^{116.9}
 - Searches a preimage with complexity 2^{123.4}

Collision Attacks and MAC Cryptanalysis (IV)

- Key recovery of envelop MAC based on MD4, Yu and Wang, Ecrypt hash function workshop 2005
- Contini, Yin, Asiacrypt 2006
 - Partial key recovery attacks on HMAC/NMAC-MD4/SHA-0

Collision Attacks and MAC Cryptanalysis (IV)

Fouque, Leurent, Nguyen, Crypto 2007

- Full key recovery attack on HMAC/NMAC-MD4
- Full key recovery attack on NMAC-MD5 in the related-key setting
- Wang, Ohta, Kunihiro, Eurocrypt 2008
 - Improved outer-key recovery attacks on HMAC/NMAC-MD4
 - Improved outer-key recovery attacks on NMAC-MD5 in the related-key setting

Collision Attacks and MAC Cryptanalysis (IV)

- Distinguishing-H attack on MAC/NMAC-MD5, MD5-MAC, Eurocrypt 09
 - New birthday attack to detect the collision (near-collision) with differential path instead of only collision detection
 - Partial key recovery attack on MD5-MAC
- The birthday Distinguishing-R attack for all the iterated MACs, Preneel and van Oorschot, Crypto'95

Length extension attack (fast implementation)

Given h = H(M), M is unknown, by choosing M', an adversary can calculate:

 $h' = H(M \parallel M') = H(h, M')$

• If H(M) = H(N), then H(M || S) = H(N || S)

Multi-collision attack: $t2^{n/2}$, ideal complexity: $2^{\frac{t-1}{t} \cdot n}$

$$f(h_p, M) = h_p$$

Cryptanalysis of MD Structure (V)

- Kelsey, Schneier, Second preimage attack of long messages, Eurocrypt 2005
- Second preimage attack based on fixed points
 - Complexity: max{ 2^{n-k} , 2^k }
 - Message length: 2^k bits
- Second preimage attack based on Joux's multicollisions

• Complexity:
$$k \cdot 2^{\frac{n}{2}+1} + 2^{n-k+1}$$

Cryptanalysis of MD Structure (V)

Kelsey, Kohn, Herding attack, Eurocrypt 2006

- Details of the attack
 - Choose messages (important or not) $M = (M_0, \dots, M_{t-1})$ with different IVs to produce h = H(M) by birthday attack
 - Choose $2^{n/2}$ important or sensitive message M'
 - Search *M* 'and *M* such that h=H(M'||M) by birthday attack
- Complexity: $2^{t/2+n/2+2} + 2^{n-t} + 2^{n-k}$

Introduced by Mendel et al., FSE 2009

.

- If there is a truncated differential path of half rounds less than half of birthday complexity, the attack works
- Reduced Whirlpool and Grøstl, FSE 2009
- Rebounded attack on the full lane compression function, Asiacrypt 2009

Part IV

SHA-3 Competition Candidates

Security Requirements of the Hash Functions

- Preimage resistance of approximately *n* bits
- Second-preimage resistance of approximately *n-k* bits for any message shorter than 2^k bits (for MD construction)
- Resistance to length-extension attacks (usually MD construction is prohibited)
- Truncating *m*-bit of the candidate function's output, the security parameter is *m* replacing *n*

- Resistance to length-extension attacks
 - Resistance to multi-block collision attacks
 - Resistance to multi-collision attacks
 - Resistance to second preimage attacks of long messages and herding attack
- Second preimage resistance of approximately *n* bits for messages with any length (strong requirement)

Security requirements for non-MD constructions

First Round Candidates

2008.10.31, NIST received 64 algorithms

- AES project received 21 algorithms
- More attention to hash functions
- 2008.12.10: 51 algorithms satisfy the Minimum Acceptability Requirements

Second Round Candidates

5 Sponges, 2 HAIFAs, 5 Wide Pipes, 1 Wide Pipe HAIFA

Algorithm	Structure	Algorithm	Structure
BLAKE	HAIFA	JH	Wide Pipe
BMW	Wide Pipe	Keccak	Sponge
CubeHash	Sponge	Luffa	Sponge
ECHO	Wide Pipe, HAIFA	Shabal	Wide Pipe
Fugue	Sponge	SHAvite-3	HAIFA
Grostl	Wide Pipe	SIMD	Wide Pipe
Hamsi	Sponge	Skein	UBI chaining

Main Structures of SHA-3 Candidates

- Wide Pipe, Lucks, Asiacrypt 2005
- Compress function: $f: \{0,1\}^w \times \{0,1\}^p \rightarrow \{0,1\}^w$
- Truncation function: $f': \{0,1\}^w \rightarrow \{0,1\}^n$

Double Pipe, Lucks, Asiacrypt 2005

Main Structures of SHA-3 Candidates

- HAIFA, Biham etc., Cryptographic Hash WorkShop, 2006
- Salt+ bh_i : n/2 bits, the ideal strength for computing second preimage seems to be $2^{n/2+n/2}$
- Computational efficiency is (*m*-*n*/2)/*m* times that of MD structure, where *n* is the output length and *m* is the message block size
 - e.g. the output length is 256 bits, message block size is 512 bits, then the efficiency is (512-128)/512=0.75 times

Main Structures of SHA-3 Candidates

- Sponge, Bertoni etc., Ecrypt workshop on hash functions, 2007
- Provable security
 - If each iteration is secure
- Building block is a reduced block cipher PANAMA, RADIOGATúN etc
- Building block is a full block cipher

Security Status of First Round SHA-3 Candidates

Hash Name	Principal Submitter	Best Attack on Main NIST Requirements	Best Attack on other Hash Requirements	
ARIRANG	Jongin Lim		near-collision	
AURORA	Masahiro Fujita	2nd preimage		
<u>Blender</u>	Colin Bradbury	collision, preimage	near-collision	
<u>Cheetah</u>	Dmitry Khovratovich		length-extension	1 mil
CHI	Phillip Hawkes		pseudo-2nd preimage	-
<u>CRUNCH</u>	Jacques Patarin		length-extension	ΤV
Dynamic SHA	Xu Zijie	collision	length-extension	
Dynamic SHA2	Xu Zijie	collision	length-extension	1-11-1-1
ECOH	Daniel R. L. Brown	2nd preimage	1	Note: from
Edon-R	Danilo Gligoroski	preimage		SHA-3 ZOC

Security Status of First Round SHA-3 Candidates

EnRUPT	Sean O'Neil	collision	
ESSENCE	Jason Worth Martin	collision	
<u>FSB</u>	Matthieu Finiasz		
LANE	Sebastiaan Indesteege		semi-free-start collision
Lesamnta	Hirotaka Yoshida		pseudo-collision
LUX	Ivica Nikoli ć	collision, 2nd preimage	DRBG,HMAC
MCSSHA- <u>3</u>	Mikhail Maslennikov	2nd preimage	URIT
MD6	Ronald L. Rivest		
<u>NaSHA</u>	Smile Markovski	collision	

Note: from SHA-3 ZOO

ates

Security Status of First Round SHA-3 Candidates

SANDstorm	Rich Schroeppel		
Sarmal	Kerem Varici	preimage	
<u>Sgàil</u>	Peter Maxwell	collision	
Spectral Hash	Çetin Kaya Koç	collision	
<u>SWIFFTX</u>	Daniele Micciancio		
<u>TIB3</u>	Daniel Penazzi	collision	
Twister	Michael Gorski	preimage	
Vortex	Michael Kounavis	preimage	

Note: from SHA-3 ZOO

Security Status of Second Round SHA-3 Candidates

Algorithms	Cryptanalytic Results	Com- plexity	Authors
Blake	4(out of 10) rounds near-collision of Blake-256	242	Guo etc.
	5(out of 10) rounds impossible differential of Blake-224/256 6(out of 14) rounds impossible differential of Blake-384/512	_	Aumasson etc.
ECHO	7(out of 8) rounds distinguisher of ECHO- 224/256 7(out of 10) rounds distinguisher of ECHO- 384/512	2 ³⁸⁴ 2 ³⁸⁴	Mendel etc.
JH	pseudo-collision pseudo-2 nd preimage	_	Bagheri
Keccak	16(out of 24) rounds distinguisher	21203.88	Aumasson etc.
	18 rounds distinguisher	21370	Boura etc.
CubeHash r/b r: rounds b: block size(byte)	preimage attack	2 ^{513-4b}	Aumasson etc.
	second preimage attack onCubeHash 6/4 collision attack on CubeHash 6/16	2 ⁴⁷⁸ 2 ²²²	Brier etc.

Security Status of Second Round SHA-3 Candidates

Algo- rithms	Cryptanalytic Results	Com- plexity	Authors
Grøstl	6 (out of 10) rounds semi-free-start collision of Grøstl-256 7 rounds distinguisher of the permutation of Grøstl-256 7 rounds distinguisher of the output transformation of Grøstl-256	2 ⁶⁴ 2 ⁵⁵ 2 ⁵⁶	Mendel etc.
SHAv-	example for chosen-salt, chosen-counter pseudo-collision	—	Peyrin
ite-3	fixed points on SHAvite-3-256 block cipher	—	Nandi
Shabal	non-randomness	_	Knudsen etc.
	non-randomness	_	Aumasson etc.
BMW	example of near-collision(original version) pseudo-preimage(original version) pseudo-collision(original version)	$2^{3n/8+1}$ $2^{3n/4+1}$	Thomsen
Skein	 17 rounds(out of 72) pseudo near-collision on Skein- 512(original version) 35 rounds known related-key distinguisher of Threefish- 512(original version) 32 rounds related-key attack onThreefish-512 (original version) 	2 ²⁴ 2 ⁴⁷⁸ 2 ³¹²	Aumasson etc.

Security Status of Second Round SHA-3 Candidates

Algo- rithms	Cryptanalytic Results	Com- plexity	Authors
Hamsi	non-randomness of 5 rounds(out of 3/6) Hamsi- 224/256 6 rounds distinguisher of Hamsi-224/256 12 rounds(out of 6/12) distinguisher of Hamsi- 384/512	2 ²⁷ 2 ⁷²⁹	Aumasson etc.
	3 rounds pseudo near-collision of Hamsi-256	2 ²¹	Nikolić
	3 rounds pseudo near-collision of Hamsi-256 4 rounds differential path of Hamsi-256 5 rounds differential path of Hamsi-256	$ \begin{array}{c} 2^{5} \\ 2^{32} \\ 2^{125} \end{array} $	Wang etc.
	zero-sum distinguisher on Q permutation	282	Aumasson etc.
Luffa	examples of pseudo collision, pseudo second preimage example of pseudo preimage of Luffa-256 pseudo preimage attack on Luffa-384/512 differential paths of <i>Q</i> permutation	$2^{64}/2^{128}$ 2^{214}	Jia etc.

Conclusions

- Today, it is more clear with collision attack, second preimage attack, preimage attack and their relationship on the existing dedicated hash functions
- More clear with influence of hash cryptanalysis on MACs cryptanalysis
- More clear with the design of hash function structures, and compression functions

Thanks!