Pseudo-cryptanalysis of the Original BMW

Søren S. Thomsen

Fast Software Encryption 2010
Seoul, Korea
February 9, 2010
Blue Midnight Wish

- Developed by Gligoroski et al.
- Four variants (224-, 256-, 384-, 512-bit)
- In the second round of the SHA-3 competition
- Was tweaked between first and second round
- My results are on the first version!
High-level design of the compression function

- H, M, Y, Z, H^*: 16 words each (e.g.: H_0, \ldots, H_{15})
- Word size 32/64 (BMW-256/BMW-512).
The permutation P

- Easy to invert
- Given M and Y, compute $H = P^{-1}(Y) \oplus M$
- Details of P irrelevant here.
The function f_1

- **Multipermutation**
 - $f_1(Y, \cdot)$ a permutation
 - $f_1(\cdot, M)$ a permutation

- Permutations are invertible

- “Simple” and “complex” rounds (security parameter).
Example: a complex round

Let $Q = Y \| Z$, with Z initially null.

$$Q_{i+16} \leftarrow s_1(Q_i) + s_2(Q_{i+1}) + s_3(Q_{i+2}) + s_0(Q_{i+3}) +$$
$$s_1(Q_{i+4}) + s_2(Q_{i+5}) + s_3(Q_{i+6}) + s_0(Q_{i+7}) +$$
$$s_1(Q_{i+8}) + s_2(Q_{i+9}) + s_3(Q_{i+10}) + s_0(Q_{i+11}) +$$
$$s_1(Q_{i+12}) + s_2(Q_{i+13}) + s_3(Q_{i+14}) + s_0(Q_{i+15}) +$$
$$M_i + M_{i+3} - M_{i+10} + K_i \mod 2^{32}$$

W_i

- Mapping from M to W corresponds to invertible matrix multiplication: $W = B \cdot M$
The function f_2

\[f_2 \]

Details later
Force $Z = 0$

Now f_2 is very simple.
f_2 with $Z = 0$

\[
\begin{align*}
H_0^* &= M_0 + Y_0 \\
 &\quad \vdots \\
H_7^* &= M_7 + Y_7 \\
H_8^* &= (M_4 + Y_4) \ll 9 + M_8 + Y_8 \\
H_9^* &= (M_5 + Y_5) \ll 10 + M_9 + Y_9 \\
H_{10}^* &= (M_6 + Y_6) \ll 11 + M_{10} + Y_{10} \\
H_{11}^* &= (M_7 + Y_7) \ll 12 + M_{11} + Y_{11} \\
H_{12}^* &= (M_0 + Y_0) \ll 13 + M_{12} + Y_{12} \\
H_{13}^* &= (M_1 + Y_1) \ll 14 + M_{13} + Y_{13} \\
H_{14}^* &= (M_2 + Y_2) \ll 15 + M_{14} + Y_{14} \\
H_{15}^* &= (M_3 + Y_3) \ll 16 + M_{15} + Y_{15}
\end{align*}
\]
Inverting f_1

Remember: $Z = 0$

- After choosing W_{15}, we can compute Y_{15}
- ... or we can choose Y_{15} and compute W_{15}
- The same with W_{14}, W_{13}, ...
f_2 with $Z = 0$

\[
egin{align*}
H_0^* &= M_0 + Y_0 \\
\vdots \\
H_7^* &= M_7 + Y_7 \\
H_8^* &= (M_4 + Y_4) \ll 9 + M_8 + Y_8 \\
H_9^* &= (M_5 + Y_5) \ll 10 + M_9 + Y_9 \\
H_{10}^* &= (M_6 + Y_6) \ll 11 + M_{10} + Y_{10} \\
H_{11}^* &= (M_7 + Y_7) \ll 12 + M_{11} + Y_{11} \\
H_{12}^* &= (M_0 + Y_0) \ll 13 + M_{12} + Y_{12} \\
H_{13}^* &= (M_1 + Y_1) \ll 14 + M_{13} + Y_{13} \\
H_{14}^* &= (M_2 + Y_2) \ll 15 + M_{14} + Y_{14} \\
H_{15}^* &= (M_3 + Y_3) \ll 16 + M_{15} + Y_{15}
\end{align*}
\]
Choosing words in M and W concurrently

- Consider the definition of W_{15}:
 \[
 W_{15} = M_{15} + M_2 - M_9
 \]

- We can “free” W_{15}

- Example: Replace everywhere M_2 by

 \[
 W_{15} - M_{15} + M_9
 \]
Controlling output words

- I.e., we can choose some words in M, and some words in W (at most 16 in total)
- Example: choose Y_6, \ldots, Y_{15} and $M_6, M_7, M_{10}, M_{11}, M_{14}, M_{15}$
- Allows to control:

\[
\begin{align*}
H_6^* &= M_6 + Y_6 \\
H_7^* &= M_7 + Y_7 \\
H_{10}^* &= (M_6 + Y_6) \ll 11 + M_{10} + Y_{10} \\
H_{11}^* &= (M_7 + Y_7) \ll 12 + M_{11} + Y_{11}
\end{align*}
\]
Summary

- We can control up to four output words
- Complexity ~ 1 compression function evaluation
- Reduces complexity of preimage, second preimage, collision attacks on compression function
- Can be extended to pseudo-attacks.
Pseudo-attack complexities

<table>
<thead>
<tr>
<th>Variant</th>
<th>Pseudo-collision</th>
<th>Pseudo-(second) preimage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW-224</td>
<td>2^{81} (2^{112})</td>
<td>2^{161} (2^{224})</td>
</tr>
<tr>
<td>BMW-256</td>
<td>2^{97} (2^{128})</td>
<td>2^{193} (2^{256})</td>
</tr>
<tr>
<td>BMW-384</td>
<td>2^{128} (2^{192})</td>
<td>2^{256} (2^{384})</td>
</tr>
<tr>
<td>BMW-512</td>
<td>2^{192} (2^{256})</td>
<td>2^{384} (2^{512})</td>
</tr>
</tbody>
</table>

(In brackets: birthday/brute force complexities)
Conclusion

- In the paper: near-collision attack in time $\sim 2^{15}$
- All results on Original BMW
- BMW tweaked – e.g., H now affects f_1 directly
- These attacks do not apply to Tweaked BMW
Thanks!