

New Distinguishing Attack on MAC Using Secret-Prefix Method

Xiaoyun Wang^{1,2}, Wei Wang², Keting Jia² and Meiqin Wang²

1 Tsinghua University 2 Shandong University

Tsinghua University

Outline

- Introduction to MAC Algorithms
- Related Distinguishing Attacks on MACs
- Distinguishing Attack on 61-Round LPMAC-SHA1
- Conclusions

Introduction to MAC Algorithms

Definition and Applications

Definition: MAC=hash function + secret key

- Security properties:
 - Data integrity
 - Data origin authentication
- Practical applications
 - Internet security: IPSec, SSL, SSH, etc.
 - Finance: banking, electronic purses, etc.

Security

Distinguishing Attack

- Distinguishing-R Attack: MAC or a random function
- Distinguishing-H Attack: which cryptographic hash function is embedded in the MAC construction

Forgery Attack

- Existential Forgery Attack: compute a valid MAC for a random message
- Universal Forgery Attack: compute a valid MAC for any given message

Key Recovery Attack

Remark: Distinguishing-R: $2^{n/2}$ complexity(from Preneel and van Oorschot Attack) Ideal complexity: 2^n computations, *n* is the length of the tag

Three Previous MACs Based on Hash Functions

Secret prefix: $H(K_1/L/M)$ L: length of the message M

$$K_1 \mid L \parallel M$$

Secret suffix: $H(M//K_2)$

$$M$$
 K_2

Envelope: $H(K_1/M/K_2)$

$$K_1 M K_2$$

Related Distinguishing Attacks on MACs

A General Attack on Iterated MACs

- Based on the birthday attack, B. Preneel, P. van Oorschot, Crypto'95
- The attack works with all the iterative MACs: block cipher and hash functions

- 1. Randomly select $2^{(n+1)/2} M_i$, Query the corresponding MACs C_i
- 2. Find (M_j, M_k) such that $C_j = C_k$
- 3. Query $(M_j || P, M_k || P)$

Distinguishing attack

- If the MAC value of $M_i//P$ and $M_k//P$ collides, the MAC algorithm is an iterated MAC
- Otherwise, is a random function.
- Convert to forgery attack directly:
 - Query the corresponding MAC of $M_i/P/P'$, denoted *C*, where *P*' is some non-empty string.
 - Obtain a valid MAC of new message $M_k//P//P'$

Distinguishing Attack on HMAC/NMAC-MD5

- To appear in Eurocrypt 09, Wang, Yu, Wang, Zhan: without related key
- Main idea: Collect messages and the corresponding MACs which guarantee inner DBB conditions hold

DBB conditions: conditions of IV in a pseudo-collision given by den Boer and Bosselaers

- Allure a DBB-collision to occur by appending the same message (high probability 2⁻⁴⁷ instead of 2⁻¹²⁸)
- Detect the inner near-collisions

Distinguishing Attack on HMAC/NMAC-MD5

- The distinguishing attack can be utilized to recover a subkey for MD5-MAC
- MD5-MAC is MDx-MAC based on MD5, MDx-MAC was proposed by Preneel and van Oorschot

Distinguishing Attack on 61-Round LPMAC-SHA1

SHA-1 Algorithm

Input: message $M = (m_0, \dots, m_{15}), IV = a_0, b_0, c_0, d_0, e_0$ For $j=1,2,\dots,80$

$$w_j = \begin{cases} m_j, & j = 0, \cdots, 15; \\ (w_{j-3} \oplus w_{j-8} \oplus w_{j-14} \oplus w_{j-16}) \lll 1, & j = 16, \cdots, 79. \end{cases}$$

$$\begin{array}{lll} a_{j} &=& (a_{j-1} \lll 5) + f_{j}(b_{j-1},c_{j-1},d_{j-1}) + e_{j-1} + w_{j-1} + k_{j}, \\ b_{j} &=& a_{j-1}, \ c_{j} = b_{j-1} \lll 30, \ d_{j} = c_{j-1}, \ e_{j} = d_{j-1}. \end{array}$$

Output: $(a_0 + a_{80}, b_0 + b_{80}, c_0 + c_{80}, d_0 + d_{80}, e_0 + e_{80})$

Boolean functions and constants

- SHA-1 hasn't any differential path with high probability, but the probability in the last three rounds is high
- How to avoid the differential path in the first round, and completely explore the probability advantage in the last three rounds

Near-Collision Path for 15-61 Steps SHA-1

Step	D.V.	XOR Difference of the Input to Step i					Canditiana	
i		Δw_{i-1}	Δa_i	Δb_i	Δc_i	Δd_i	Δe_i	Conditions
14	2	2, 31, 32			32	2, 30	7	$a_{13,2} = 1, a_{13,30} = 0, a_{13,32} = 1$
								$a_{11,4} = w_{15,2} + 1, a_{11,32} = w_{14,30}$
								$a_{10,9} = w_{14,7} + 1$
15	2	2, 7, 30, 31, 32	2			32	2,30	$a_{15,2} = w_{14,2}, a_{14,32} = 1$
16	0	2, 7, 30, 31		2			32	$a_{14,4} = w_{14,2} + w_{16,2},$
								$a_{13,4} = w_{14,2} + w_{16,2} + 1$
17	0	2, 32			32			$a_{16,32} = 0$
18	0					32		$a_{17,32} = 1$
19	0						32	
20	0	32						
21	2	2	2					$a_{21,2} = w_{20,2}$
22	0	7		2				$a_{20,4} = a_{19,4} + w_{20,2} + w_{23,7} + 1$
23	2		2		32			$a_{23,2} = w_{23,7} + 1$
24	0	7,32		2		32		$a_{22,4} = a_{21,4} + w_{23,7} + w_{25,7}$
25	2	32	2		32		32	$a_{25,2} = w_{25,7} + 1$
26	0	7		2		32		$a_{24,4} = a_{23,4} + w_{25,7} + w_{26,1}$
27	3	1, 32	1		32		32	$a_{27,1} = w_{26,1} + 1$
28	0	6,7		1		32		$a_{26,3} = a_{25,3} + w_{26,1} + w_{28,1} + 1$
29	0	1, 2, 32			31		32	$a_{28,31} = a_{26,1} + w_{26,1} + w_{29,31}$
30	2	2,31	2			31		$a_{30,2} = w_{29,2},$
								$a_{29,31} = a_{28,1} + w_{26,1} + w_{30,31} + 1$
31	0	7,31, 32		2			31	$a_{29,4} = a_{28,4} + w_{29,2} + w_{31,2} + 1$
32	0	2, 31, 32			32			

D.V.: Disturbance Vector

$w_{14,31} = w_{14,30} + 1, w_{15,7} = w_{14,2} + 1, w_{15,30} = w_{14,30}, w_{15,31} = w_{15,30} + 1$
$w_{21,7} = w_{20,2} + 1, w_{27,6} = w_{26,1} + 1, w_{27,7} = w_{26,1}, w_{28,2} = w_{28,1} + 1$
$w_{30,7} = w_{29,2} + 1, w_{31,31} = w_{26,1} + 1, w_{35,7} = w_{34,2} + 1, w_{41,7} = w_{40,2} + 1$
$w_{43,7} = w_{40,2} + 1, w_{44,2} = w_{40,2} + 1, w_{55,8} = w_{54,3} + 1, w_{56,3} = w_{54,3} + 1$
$w_{57,1} = w_{54,3} + 1, w_{58,1} = w_{54,3} + 1, w_{58,9} = w_{57,4} + 1, w_{59,1} = w_{54,3} + 1$
$w_{59,4} = w_{57,4} + 1, w_{59,8} = w_{58,3} + 1$

Obstacles II

A LINERSING

- $\Delta^{-}H_{P} = H_{P} H'_{P}$ is unknown output difference: $\Delta^{-}H_{P} + \Delta^{-}ch_{61}$
 - Birthday attack can't be applied directly
- How to choose messages, and fulfill the birthday attack to detect the inner near-collision

Mathematical Properties of the Differential Path

If the inner near-collision occurs, replace (M_1, M_1') with another $(\overline{M}_1, \overline{M'_1})$

 $Pr((P||M_0||\overline{M}_1, P'||M'_0||\overline{M'_1}) \text{ follows the DP}) = 2^{-34}.$

DP: Differential path

If $(P||M_0||M_1, P'||M'_0||M'_1)$ and $(P||M_0||N_1, P'||M'_0||N'_1)$ s.t.,

$$\begin{aligned} & H_{K}(P||M_{0}||M_{1}) - H_{K}(P'||M'_{0}||M'_{1}) \\ &= H_{K}(P||M_{0}||N_{1}) - H_{K}(P'||M'_{0}||N'_{1}) \\ &= \Delta^{-}H_{P} + \Delta^{-}ch_{61} = \delta. \end{aligned} \\ \Rightarrow \\ & H_{k}(P||M_{0}||M_{1}) - H_{K}(P||M_{0}||N_{1}) \\ &= H_{K}(P'||M'_{0}||M'_{1}) - H_{K}(P'||M'_{0}||N'_{1}) = \delta'. \end{aligned}$$

Distinguisher

Distinguishing Attack Details

- (1) Randomly choose a structure S, which consists of 2^{84.5} different one-block messages
- (2) For all P in S, compute the following two structures of differences
 - $S_1 = \{LPMAC(P||M_0||M_1) LPMAC(P||M_0||N_1) \mid P \in S\},\$
 - $S_2 \ = \ \{LPMAC(P||M_0'||M_1') LPMAC(P||M_0'||N_1') \mid P \in S\}.$

Search all the collisions between two structures by the birthday attack

Distinguishing Attack Details

(3) For each collision, compute

 $\delta = LPMAC(P||M_0||M_1) - LPMAC(P'||M'_0||M'_1).$ Substitute M₁ and M1' with 2³⁴ different $\overline{M_1}$, $\overline{M'_1}$ respectively, compare

LPMAC($P || M_0 || \overline{M_1}$) – *LPMAC* ($P' || M'_0 || M'_1$) with δ . • If one match found, LEWIAC is based on of-step STA-1.

Else, go to step 4.

(4) Choose another structure *S*, and repeat steps (2)-(3) If the number of structures exceeds 2^{68} , then a random function

The complexity is about 2

Comparison with the Previous Distinguishing Attacks on MACs Based on SHA-1

	MAC	Steps	Data
Kim $et \ al. \ [9]$	HMAC	43	$2^{154.9}$
Rechberger <i>et al.</i> [13]	HMAC	50	$2^{153.5}$
		43	$2^{124.5}$
This paper	LPMAC	50	$2^{136.5}$
		61	$2^{154.5}$

Conclusions

- This paper: distinguish an inner near-collision occur inside one iteration
 - To distinguish 61-round LPMAC-SHA1
- Previous distinguishing techniques
 - Distinguish an inner collision between iterations such that $(M_1||M_2), (M_1'||M_2), H(K, M_1)$ and $H(K, M_1')$ is a collision Available to iterative MACs
 - Distinguish an inner near-collision between iterations such that $(M_1||M_2)$, $(M_1'||M_2)$, $H(K, M_1)$ and $H(K, M_1')$ is a near-collision

Available for some important specific iterative MACs

Further Research Results

- Distinguish inner near-collisions or inner collisions with specific truncated differential path
 - To distinguish the instantiated MAC from a random function
 - To recover the subkey or equivalent subkey

Further Research Results

A THE REST

----Attack on ALPHA-MAC

- A successful example: ALPHA (Alred MAC with AES operation), FSE 2005. Designers: Daemen and Rijmen
- Distinguish an inner collision with 2-round differential path
- Recover the inner state which is an equivalent subkey with 2^{65.5} computations

Further Research Results

---Attack on Pelican, MT-MAC and PC-MAC Based on 4-Round AES

- To distinguish an inner near-collision or inner collision with specific differential path
- Choose message pairs to allure an impossible differential path to occur under a wrong subkey

Related References

- Impossible Differential Cryptanalysis of Pelican, MT-MAC-AES and PC-MAC-AES, IACR ePrint
- Distinguishing and Second-Preimage Attack on CBC-like MACs, IACR ePrint
- Distinguishing and Forgery Attacks on Alred and Its AES-based Instance Alpha-MAC, IACR ePrint
- Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC, To appear in Eurocrypt 09

Thank You!