MAC Reforgeability

JOHN BLACK¹ AND MARTIN COCHRAN² FAST SOFTWARE ENCRYPTION 2009

¹UNIVERSITY OF COLORADO, BOULDER ²GOOGLE INC.

Outline

- Problem setting "reforgeability"
 - Appropriate scenarios
- Application to current MACs
- Propose new MAC with good tradeoffs
 - small tags
 - fast
 - flexible security
 - security reduction

Message Authentication: setting

- Alice and Bob share a secret key K
- Adversary Eve has access to communication channel
 - Can inject/modify messages
- Goal (informally): all adversarial modifications to channel are detectable

Message Authentication Codes (stateless)

- Append Tag = F(K, M) to each message M
- Eve should not be able to find new message
 M' and Tag' such that Tag' = F(K, M')

Message Authentication Codes (stateful)

- Append Tag = F(K, M, n) to each message M
- Eve should not be able to find new tuple (M', Tag', n') such that Tag' = F(K, M', n')

Current Options

- Essentially there are three types of MACs
 - Blockcipher based (CBC-MAC)
 - Compression-function based (HMAC)
 - Wegman-Carter based (Poly1305,VMAC)

Wegman-Carter

Let $\epsilon \in \mathbb{R}^+$ and fix a domain \mathcal{D} and range \mathcal{R} . A finite multiset of hash functions $\mathcal{H} = \{h : \mathcal{D} \to \mathcal{R}\}$ is said to be ϵ -Almost Universal (ϵ -AU) if for every $x, y \in \mathcal{D}$ with $x \neq y$, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \epsilon$.

Building Blocks:

Wegman-Carter

Let $\epsilon \in \mathbb{R}^+$ and fix a domain \mathcal{D} and range \mathcal{R} . A finite multiset of hash functions $\mathcal{H} = \{h : \mathcal{D} \to \mathcal{R}\}$ is said to be ϵ -Almost Universal (ϵ -AU) if for every $x, y \in \mathcal{D}$ with $x \neq y$, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \epsilon$.

Building Blocks:

Fixed $h \in \mathcal{H}$

Key: $\{K, h\}$

Formal Model

- Oracle for MAC, oracle for verifications
- Adversary can query messages of her choice and receive tags
- Adversary wins if she can produce valid tag for unqueried message (valid verification query)

Security of typical MACs

- Security usually measured in terms of tag length, queries
- Most stateless MACs have chance of forgery of around $\frac{q_s^2}{2^n}$ (ϵq_s^2)
- Stateful MACs are better: more like $\frac{q_v}{2^n}$ (ϵq_v)

What happens after security is lost?

- Security bound measures chance of first forgery
- Are more forgeries possible?
- Perfect MAC random function

• Video streaming

- Video streaming
- VOIP

- Video streaming
- VOIP
- {power, CPU, bandwidth}-limited environments (sensor networks, eg)

Breaking Point

 All MACs examined have some breaking point, after which many forgeries are possible

Summary of Attacks

MAC scheme	Expected queries	Succumbs to	Succumbs to	Message
	for j forgeries	padding attack	other attack	freedom
CBC MAC	$C_1 + j$			m-2
EMAC	$C_1 + j$			m-2
XCBC	$C_1 + j$			m-2
PMAC	$C_1 + j$			1
ANSI retail MAC	$C_1 + j$			m-2
HMAC	$\sum_{i} C_i/2^i + j$			m-1

 C_i is the *i*-th observed collision (no truncation of tags)

Summary of Attacks

UHF in FH mode	Expected queries	Reveals key	Queries for
	for j forgeries		key recovery
hash127/Poly1305	$C_1 + \log m + j$		$C_1 + \log m$
VMAC	$C_1 + 2j$		
Square Hash	$C_1 + 2j$		mC_1
Topelitz Hash	$C_1 + 2j$		
Bucket Hash	$C_1 + 2j$		
MMH/NMH	$C_1 + 2j$		

UHF in WCS mode	Expected queries	Repeated	Reveals key	Queries for
with nonce misuse	for j forgeries	nonce		key recovery
hash127/Poly1305	$2 + \log m + j$	1		$2 + \log m$
VMAC	$C_1 + 2j$	$C_1 + j$		
Square Hash	3m+j	m		3m
Topelitz Hash	2j+2	1		
Bucket Hash	2j+2	1		
MMH/NMH	2m+j	m		2m

There's more

 Preneel and Handschuh found much more severe attacks, many involving only verification queries

OK. Now what?

- Can we fix this?
- Probably, but at what cost?
 - F(F(K, M), M) would probably work but twice as much computation
 - Look for better tradeoffs

OK. Now what?

What if F(K,M) = F(K,M') and F(F(K,M),M) = F(F(K,M'),M')?

- Can we fix this?
- Probably, but at what cost?
 - F(F(K, M), M) would probably work but twice as much computation
 - Look for better tradeoffs

Good low security MACs

- Short tag
- Fast
- Guessing the tag is best adversarial strategy (up to a point!)
 - Attacker may get one right every now and then (one frame in video stream)

Countermeasures

- Truncate tags to desired length
- Use state to avoid reforgeability

CBC-MAC HMAC WCS MACs

Wegman-Carter

WMAC

Tag

- Generalization of options I and III
- State included, uniqueness not required

WMAC

WMAC Benefits

- Fast, comparable to fastest WCS MACs
- Nonce reuse
 - Sliding scale of security
- Tags may be truncated safely
- Tight security reduction

WMAC tradeoffs

- No partial precomputation
- PRF must accept larger input (possible extra computation)
- Still has breaking point
- Limiting incorrect verification queries is important!

Security Reduction

Bad things happen with (approximate) probability:

$$\frac{\epsilon(\alpha-1)q_s}{2} + \frac{\epsilon}{2^{L-1}}\left(q_v^2 + q_v q_s\right) + 2\epsilon q_v$$

 q_s - number of signing queries q_v - number of verification queries L - tag length in bits α - max number of signing queries per nonce ϵ - of the ϵ -AU family used

Security Reduction

Let α in $\{1, q_s\}$ for bound for {Option III, Option I}.

Bad things happen with (approximate) probability:

$$\frac{\epsilon(\alpha-1)q_s}{2} + \frac{\epsilon}{2^{L-1}}\left(q_v^2 + q_v q_s\right) + 2\epsilon q_v$$

 q_s - number of signing queries q_v - number of verification queries L - tag length in bits α - max number of signing queries per nonce ϵ - of the ϵ -AU family used

Example Parameters

- Truncated AES as PRF
- VHASH from VMAC
- Comparable speed to VMAC
- $\epsilon \leq 2^{-82}, L = 24, \alpha = 2^{24}$ (8-bit counter value)
- After 2³² queries, 2²⁴ forgery attempts, one forgery is expected

Example Parameters

Truncated AES as PRF

Tag + counter only 32 bits

- VHASH from VMAC
- Comparable speed to VMAC
- $\epsilon \leq 2^{-82}, L = 24, \alpha = 2^{24}$ (8-bit counter value)
- After 2³² queries, 2²⁴ forgery attempts, one forgery is expected

