
Blockcipher Based Hashing Revisited

Martijn Stam

EPFL � LACAL

FSE

23 February 2009

Blockcipher Based Hashing
The principle idea

. X E Y

KM

V W = HE(M,V)

E : {0, 1}n × {0, 1}n → {0, 1}n

n

n

n

Block cipher with n-bit key, operating on n bit blocks: Y = EK(X).
Compression function HE from 2n bits to n bits
(input consists of n bits message and n bits chaining variable).

Hash function HE using Merkle-Damgård transform.

Blockcipher Based Hashing
The principle idea

. X E Y

KM

V W = HE(M,V)

E : {0, 1}n × {0, 1}n → {0, 1}n

n

n nn

n

n

Block cipher with n-bit key, operating on n bit blocks: Y = EK(X).
Compression function HE from 2n bits to n bits
(input consists of n bits message and n bits chaining variable).

Hash function HE using Merkle-Damgård transform.

Blockcipher Based Hashing
The principle idea

. X E Y

KM

V W = HE(M,V)

E : {0, 1}k × {0, 1}n → {0, 1}n

m

s sn

k

n

Block cipher with k-bit key, operating on n bit blocks: Y = EK(X).
Compression function HE from m+ s bits to s bits
(input consists of m bits message and s bits chaining variable).

Hash function HE using Merkle-Damgård transform.

Blockcipher Based Hashing
Collision resistance: A measure of security

((M,V), (M ′, V ′))IV

E

D

((M,V), (M ′, V ′))

q times

A

Advcoll
H (A) = Pr

[
(M,V) 6= (M ′, V ′) and HE(M,V) = HE(M ′, V ′)

]

Advcoll
H (A) = max

IV
Pr

[
M 6= M′ and HE

IV (M) = HE
IV (M′)

]

Advcoll
H (q) ≤ Advcoll

H (q)

Blockcipher Based Hashing
Collision resistance: A measure of security

((M,V), (M ′, V ′))IV

E

D

((M,V), (M ′, V ′))

q times

A

Advcoll
H (A) = Pr

[
(M,V) 6= (M ′, V ′) and HE(M,V) =

{
HE(M ′, V ′)

IV

]

Advcoll
H (A) = max

IV
Pr

[
M 6= M′ and HE

IV (M) = HE
IV (M′)

]

Advcoll
H (q) ≤ Advcoll

H (q)

Blockcipher Based Hashing
Collision resistance: A measure of security

((M,V), (M ′, V ′))IV

E

D

(M,M′)

q times

A

Advcoll
H (A) = Pr

[
(M,V) 6= (M ′, V ′) and HE(M,V) =

{
HE(M ′, V ′)

IV

]
Advcoll

H (A) = max
IV

Pr
[
M 6= M′ and HE

IV (M) = HE
IV (M′)

]

Advcoll
H (q) ≤ Advcoll

H (q)

Blockcipher Based Hashing
Collision resistance: A measure of security

((M,V), (M ′, V ′))IV

E

D

(M,M′)

q times

A

Advcoll
H (A) = Pr

[
(M,V) 6= (M ′, V ′) and HE(M,V) =

{
HE(M ′, V ′)

IV

]
Advcoll

H (A) = max
IV

Pr
[
M 6= M′ and HE

IV (M) = HE
IV (M′)

]

Advcoll
H (q) ≤ Advcoll

H (q)

Example: Davies-Meyer Construction

M

V E W = EV (M)⊕M

K =

1 ·

M

⊕ 0 · V

X =

0 ·M ⊕ 1 ·

V

W = Y⊕

0 ·M ⊕ 1 ·

V

Where K,X,U ∈ Z2
2.

[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.

Example: Davies-Meyer Construction

M

V E W = EV (M)⊕M

K = 1 ·M ⊕ 0 · V
X = 0 ·M ⊕ 1 · V

W = Y⊕ 0 ·M ⊕ 1 · V

Where K,X,U ∈ Z2
2.

[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.

Example: Davies-Meyer Construction

M

V E W = EV (M)⊕M

(
K

X

)
=

(
1 0
0 1

)
·
(
M

V

)

=
(
K
X

)(
M

V

)

W = Y ⊕
(
0 1

)
·
(
M

V

)

= Y ⊕U
(
M

V

)

Where K,X,U ∈ Z2
2.

[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.

Example: Davies-Meyer Construction

M

V E W = EV (M)⊕M

(
K

X

)
=

(
1 0
0 1

)
·
(
M

V

)
=

(
K
X

)(
M

V

)

W = Y ⊕
(
0 1

)
·
(
M

V

)
= Y ⊕U

(
M

V

)

Where K,X,U ∈ Z2
2.

[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.

12 Collision Resistant Compression Functions

[PGV93] Schemes deemed secure

[BRS02] Provable collision resistance: Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q) .

12 Collision Resistant Compression Functions

[PGV93] Schemes deemed secure

[BRS02] Provable collision resistance: Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q) .

Further 8 Collision Resistant Hash Functions

[BRS02] Provable secure in the iteration: Advcoll
H (q) ≤ 3q(q + 1)/2n

[DL06] Improved bounds: Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q)

Further 8 Collision Resistant Hash Functions

[BRS02] Provable secure in the iteration: Advcoll
H (q) ≤ 3q(q + 1)/2n

[DL06] Improved bounds: Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q)

Questions

Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

What happens if for instance

we want to chop the output in the end?

we want to use addition modulo 2n instead of XOR?

we want to use a blockcipher with keys larger than the blocksize?

we want security beyond the blocksize?

Questions

Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

What happens if for instance

we want to chop the output in the end?

we want to use addition modulo 2n instead of XOR?

we want to use a blockcipher with keys larger than the blocksize?

we want security beyond the blocksize?

General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!

General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!

General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!

General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!

General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q)

⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q)

⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q)

⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q)

⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

Advcoll
H (A) ≈ (Size of list)2

2n

=
q2

2n

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q) ⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

Advcoll
H (A) ≈ (Size of list)2

2n
=
q2

2n

Type I: Secure Compression (Classical)

V Cpre E Cpost W

M
k

n n n n

k

Create a list of tuples V
M→ W such that W = HE(M,V). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q) ⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

For forward queries,
Cpost(M,V, ·) : {0, 1}n → {0, 1}n bijective for all M,V .

Dealing with Decryption Queries
Auxiliary function Caux

K

D C−pre

Y Cpost W

k

n

n n

k

n

Caux(K,X, Y) = Cpost(C−pre(K,X), Y)

For inverse queries,
Caux(K, ·, Y) : {0, 1}n → {0, 1}n bijective for all K,Y

gives V
M→ W with W 's distributed roughly independent uniform.

Dealing with Decryption Queries
Auxiliary function Caux

K

D C−pre

Y Cpost W

k

n

n n

k

n

Caux(K,X, Y) = Cpost(C−pre(K,X), Y)

For inverse queries,
Caux(K, ·, Y) : {0, 1}n → {0, 1}n bijective for all K,Y

gives V
M→ W with W 's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

1 The preprocessing Cpre is bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 possible matrices).

2 For all M,V the postprocessing Cpost(M,V, ·) is bijective.

[PGV/BRS] Automatically satis�ed.

3 For all K,Y the modi�ed postprocessing Caux(K, ·, Y) is bijective.

[PGV/BRS]
(
K
U

)
is invertible (2 possibilities per matrix).

⇒ Gives exactly the 12 Type-I PGV schemes.

Type I: Secure Compression (Classical)

1 The preprocessing Cpre is bijective.
[PGV/BRS]

(
K
X

)
is invertible (6 possible matrices).

2 For all M,V the postprocessing Cpost(M,V, ·) is bijective.
[PGV/BRS] Automatically satis�ed.

3 For all K,Y the modi�ed postprocessing Caux(K, ·, Y) is bijective.
[PGV/BRS]

(
K
U

)
is invertible (2 possibilities per matrix).

⇒ Gives exactly the 12 Type-I PGV schemes.

Type I: Secure Compression (Classical)

1 The preprocessing Cpre is bijective.
[PGV/BRS]

(
K
X

)
is invertible (6 possible matrices).

2 For all M,V the postprocessing Cpost(M,V, ·) is bijective.
[PGV/BRS] Automatically satis�ed.

3 For all K,Y the modi�ed postprocessing Caux(K, ·, Y) is bijective.
[PGV/BRS]

(
K
U

)
is invertible (2 possibilities per matrix).

⇒ Gives exactly the 12 Type-I PGV schemes.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform

For all K, C−pre(K, ·) restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform

For all K, C−pre(K, ·) restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform
For all K, C−pre(K, ·) restricted to V is bijective.

[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.
[PGV/BRS]

(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform
For all K, C−pre(K, ·) restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.
[PGV/BRS]

(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform
For all K, C−pre(K, ·) restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.

Chopped Compression Functions (s < n)

V Cpre E Cpost W

M
2n-s

s n n s

n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective

balanced

.

3 For all K,Y : Caux(K, ·, Y) is bijective

balanced

.

Advcoll
H (q) ≤ q(q + 1)/2s

Immediate consequence: chopping e.g., Davies-Meyer is secure.

Chopped Compression Functions (s < n)

V Cpre E Cpost W

M
2n-s

s n n s

n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective balanced .

3 For all K,Y : Caux(K, ·, Y) is bijective balanced .

Advcoll
H (q) ≤ q(q + 1)/2s

Immediate consequence: chopping e.g., Davies-Meyer is secure.

Chopped Compression Functions (s < n)

V Cpre E Cpost W

M
2n-s

s n n s

n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective balanced .

3 For all K,Y : Caux(K, ·, Y) is bijective balanced .

Advcoll
H (q) ≤ q(q + 1)/2s

Immediate consequence: chopping e.g., Davies-Meyer is secure.

Supercharged Compression Functions
Speci�ed for the double-length scenario

V Cpre E Cpost W

M
n

2n n n 2n

2 n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective

injective

.

Range denoted by Rpre,(M,V)

3 For all K,Y : Caux(K, ·, Y) is bijective

injective

.

Range denoted by Raux,(K,Y)

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}
Advcoll

H (q) ≤ γ1/2nq

2n−6

Supercharged Compression Functions
Speci�ed for the double-length scenario

V Cpre E Cpost W

M
n

2n n n 2n

2 n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective injective .

Range denoted by Rpre,(M,V)

3 For all K,Y : Caux(K, ·, Y) is bijective injective .

Range denoted by Raux,(K,Y)

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}
Advcoll

H (q) ≤ γ1/2nq

2n−6

Supercharged Compression Functions
Speci�ed for the double-length scenario

V Cpre E Cpost W

M
n

2n n n 2n

2 n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective injective .

Range denoted by Rpre,(M,V)

3 For all K,Y : Caux(K, ·, Y) is bijective injective .

Range denoted by Raux,(K,Y)

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}
Advcoll

H (q) ≤ γ1/2nq

2n−6

Supercharged Compression Functions
Speci�ed for the double-length scenario

V Cpre E Cpost W

M
n

2n n n 2n

2 n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective injective .

Range denoted by Rpre,(M,V)

3 For all K,Y : Caux(K, ·, Y) is bijective injective .

Range denoted by Raux,(K,Y)

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}

Advcoll
H (q) ≤ γ1/2nq

2n−6

Supercharged Compression Functions
Speci�ed for the double-length scenario

V Cpre E Cpost W

M
n

2n n n 2n

2 n

1 The preprocessing Cpre is bijective.

2 For all M,V : Cpost(M,V, ·) is bijective injective .

Range denoted by Rpre,(M,V)

3 For all K,Y : Caux(K, ·, Y) is bijective injective .

Range denoted by Raux,(K,Y)

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}
Advcoll

H (q) ≤ γ1/2nq

2n−6

A Rate-1 Double-Length Compression Function
Collision Resistance

M

V1 W1

V2 W2 = MW 2
1 + V1W1 + V2

E

A Rate-1 Double-Length Compression Function
Collision Resistance

M

V1 W1

V2 W2 = MW 2
1 + V1W1 + V2

E

Rpre,(M,V1,V2) =
{
(W,MW 2 + V1W + V2)|W ∈ {0, 1}n

}
Raux,(K1,K2,Y) =

{
(W,W 3 + YW 2 +K1W +K2)|W ∈ {0, 1}n

}
.

γ = 3 ⇒ Advcoll
H (q) ≤ 2(4n+ 2)q/2n .

A Rate-1 Double-Length Compression Function
Collision Resistance

M

V1 W1

V2 W2 = MW 2
1 + V1W1 + V2

E

Rpre,(M,V1,V2) =
{
(W,MW 2 + V1W + V2)|W ∈ {0, 1}n

}
Raux,(K1,K2,Y) =

{
(W,W 3 + YW 2 +K1W +K2)|W ∈ {0, 1}n

}
.

γ = 3 ⇒ Advcoll
H (q) ≤ 2(4n+ 2)q/2n .

A Rate-1 Double-Length Compression Function
Collision Resistance

M

V1 W1

V2 W2 = V2W
2
1 + V1W1 +M

E

Rpre,(M,V1,V2) =
{
(W,V2W

2 + V1W +M)|W ∈ {0, 1}n
}

Raux,(K1,K2,Y) =
{
(W,K2W

2 + (K1 + 1)W + Y)|W ∈ {0, 1}n
}
.

γ = 2n ⇒ Advcoll
H (q) ≤ 2(4n+ 2)q/2n/2 .

Conclusion

Presented a new framework to capture blockcipher based hashing.

PGV/BRS results can be derived from it.

Allows for easy generalization for chopping and overloading.

Developed theory for supercharging compression functions.

A new collision resistant rate-1 double length construction.

	History of Blockcipher Based Hashing
	Revisiting the Classical Scenario
	Extending the Results

