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E:{0,1}* x {0,1}" — {0,1}"

o Block cipher with k-bit key, operating on n bit blocks:

o Compression function H¥ from m + s bits to s bits
(input consists of m bits message and s bits chaining variable).

@ Hash function H¥ using Merkle-Damgard transform.
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Blockcipher Based Hashing
Collision resistance: A measure of security

(M, M)

AV (A) = Pr [(M,V) # (M', V') and HP (M, V) = {HE(MI’V'>]
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Adv§S"(A) = max Pr [M # M’ and HE, (M) = HE, (M)]

AdviE"(q) < AdvE"(0)
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Example: Davies-Meyer Construction

M

Where K, X, U € Z3.
[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.
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[PGV93] Schemes deemed secure
[BRS02] Provable collision resistance: Advd'(q) < salg+1)/(2" —q) .
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[BRS02] Provable secure in the iteration: AdvsY"(q) < 3q¢(q +1)/2"
[DLO6] Improved bounds: Adv$S'(q) < Lq(g+1)/(2" - q)
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o Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

o What happens if for instance

we want to chop the output in the end?

we want to use addition modulo 2" instead of XOR?

we want to use a blockcipher with keys larger than the blocksize?
we want security beyond the blocksize?
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Classical: s=n, m+s=n+k
Includes PGV/BRS (for k = n).

Chopped: s<n,m+s=n+k
Includes Grindahl (for k = 0).

Overloaded: s=n, m+s>n+k
Includes sponges (for k = 0).

Supercharged: s >n, m+s=n+k
Allows security beyond the birthday bound!
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Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

o Minimize the size of this list (given ¢) = CP*® bijective.
o The W's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

Adv(;_?”(A) ~ (SiZe ;: ||St)2 _ ;_Z



Type I: Secure Compression (Classical)
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Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)
o Minimize the size of this list (given ¢) = CP*® bijective.

o The W's distributed roughly independent uniform.

For forward queries,
CPOSY (M, V,-) : {0,1}™ — {0, 1}™ bijective for all M,V.
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Dealing with Decryption Queries

Auxiliary function C?34%

C(K, X, Y) = CP®(C"(K, X),Y)

For inverse queries,
C*™(K,-,Y):{0,1}™ — {0,1}"™ bijective for all K, Y
gives V' 5 W with W's distributed roughly independent uniform.
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@ The preprocessing CP™ is bijective.
[PGV/BRS] (¥) is invertible (6 possible matrices).

@ For all M,V the postprocessing CP°'(M,V,-) is bijective.
[PGV/BRS] Automatically satisfied.

@ For all K,Y the modified postprocessing C*"*(K,-,Y) is bijective.
[PGV/BRS] (E) is invertible (2 possibilities per matrix).

= Gives exactly the 12 Type-l PGV schemes.
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Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:

@ Minimize the size of this list (given ¢) = CP* bijective.
[PGV/BRS] (%) is invertible (6 matrices possible).

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V, ) is bijective.

@ For an inverse query V is distributed roughly independent uniform
For all K, C7P*(K, ") restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M @ V.
= Only 4 matrices possible, U unrestricted.

= 16 Type-ll schemes: 8 as identified by [BRS02] + 8 that are Type-I.
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@ The preprocessing CP™ is bijective.
@ For all M,V: CP°*(M,V,-)is bijective

@ Forall K,Y: C*"™(K,-,Y) is bijective
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Chopped Compression Functions (s < n)

M
2n—s.}

IN !
e I o

@ The preprocessing CP™ is bijective.

Q@ Forall M,V: CPSY(M,V,-) is M balanced .
@ Forall K)Y: C*"(K,-,Y) is M balanced .

Adv'(q) < q(q+1)/2°

Immediate consequence: chopping e.g., Davies-Meyer is secure.
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Supercharged Compression Functions
Specified for the double-length scenario
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@ The preprocessing CP™ is bijective.

@ For all M,V: CPSY(M,V,-) is M injective .

Range denoted by R (ar,v)
© Forall K,Y: C*(K,-Y) is M injective .
Range denoted by R,y (k. v)
y=max{|Rz N Ry|: Z Z" € {pre,aux} x {0,1}*"*" Z + 7'}
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A Rate-1 Double-Length Compression Function

Collision Resistance

Vi ——— B— M
FE
Vo ————> Wy ZMW12+VlW1+V2

Rpre,(M,Vl,Vz) = {(VV: MW2 + ‘/IW + ‘/2)|W € {07 1}n}
Raw (5 Kay) = LW, W3 + YW?2 + KGW + Ko)|W € {0,1}"} .

v=3 = Advg'(q) <2(4n+2)q/2" .



A Rate-1 Double-Length Compression Function

Collision Resistance
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Ruve,(vvi,v2) = { (W, VaW? + VIW + M)|W € {0,1}"}
Raux, (K1, Ko, v) = { (W, KoW? 4 (K1 + L)W + Y)|W € {0,1}"} .

y=2" = Adv'(q) < 2(4n+2)q/2"? .



Conclusion

Presented a new framework to capture blockcipher based hashing.
PGV/BRS results can be derived from it.

Allows for easy generalization for chopping and overloading.
Developed theory for supercharging compression functions.

A new collision resistant rate-1 double length construction.
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