
Blockcipher Based Hashing Revisited

Martijn Stam

EPFL � LACAL

FSE

23 February 2009



Blockcipher Based Hashing
The principle idea
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Block cipher with n-bit key, operating on n bit blocks: Y = EK(X).
Compression function HE from 2n bits to n bits
(input consists of n bits message and n bits chaining variable).

Hash function HE using Merkle-Damgård transform.
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(input consists of m bits message and s bits chaining variable).
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Blockcipher Based Hashing
Collision resistance: A measure of security
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Example: Davies-Meyer Construction

M

V E W = EV (M)⊕M

K =

1 ·

M

⊕ 0 · V

X =

0 ·M ⊕ 1 ·

V

W = Y⊕

0 ·M ⊕ 1 ·

V

Where K,X,U ∈ Z2
2.

[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.
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Questions

Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

What happens if for instance

we want to chop the output in the end?

we want to use addition modulo 2n instead of XOR?

we want to use a blockcipher with keys larger than the blocksize?

we want security beyond the blocksize?
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General Single Call Scenario
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Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!



General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!



General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!



General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!



General Single Call Scenario

V Cpre E Cpost W

M
m

s n n s

k

Classical: s = n, m+ s = n+ k
Includes PGV/BRS (for k = n).

Chopped: s < n, m+ s = n+ k
Includes Grindahl (for k = 0).

Overloaded: s = n, m+ s > n+ k
Includes sponges (for k = 0).

Supercharged: s > n, m+ s = n+ k
Allows security beyond the birthday bound!



Type I: Secure Compression (Classical)
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Create a list of tuples V
M→ W such that W = HE(M,V ). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q)

⇒ Cpre bijective.

The W 's distributed roughly independent uniform.
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Type I: Secure Compression (Classical)
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Create a list of tuples V
M→ W such that W = HE(M,V ). Then

Collision in H ⇔ �Collision� in list (W -component)

Minimize the size of this list (given q) ⇒ Cpre bijective.

The W 's distributed roughly independent uniform.

For forward queries,
Cpost(M,V, ·) : {0, 1}n → {0, 1}n bijective for all M,V .



Dealing with Decryption Queries
Auxiliary function Caux
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gives V
M→ W with W 's distributed roughly independent uniform.
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Type I: Secure Compression (Classical)

1 The preprocessing Cpre is bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 possible matrices).

2 For all M,V the postprocessing Cpost(M,V, ·) is bijective.

[PGV/BRS] Automatically satis�ed.

3 For all K,Y the modi�ed postprocessing Caux(K, ·, Y ) is bijective.

[PGV/BRS]
(
K
U

)
is invertible (2 possibilities per matrix).

⇒ Gives exactly the 12 Type-I PGV schemes.
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Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V
M→ W satisfy:

1 Minimize the size of this list (given q) ⇒ Cpre bijective.

[PGV/BRS]
(
K
X

)
is invertible (6 matrices possible).

2 For a forward query W is distributed roughly independent uniform
⇒ For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For an inverse query V is distributed roughly independent uniform

For all K, C−pre(K, ·) restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M ⊕V .
⇒ Only 4 matrices possible, U unrestricted.

⇒ 16 Type-II schemes: 8 as identi�ed by [BRS02] + 8 that are Type-I.
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Chopped Compression Functions (s < n)
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.

Advcoll
H (q) ≤ q(q + 1)/2s

Immediate consequence: chopping e.g., Davies-Meyer is secure.
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Speci�ed for the double-length scenario
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3 For all K,Y : Caux(K, ·, Y ) is bijective
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.

Range denoted by Raux,(K,Y )

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {pre, aux} × {0, 1}2n+n, Z 6= Z ′

}
Advcoll

H (q) ≤ γ1/2nq

2n−6
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Collision Resistance

M

V1 W1

V2 W2 = V2W
2
1 + V1W1 +M

E

Rpre,(M,V1,V2) =
{
(W,V2W

2 + V1W +M)|W ∈ {0, 1}n
}

Raux,(K1,K2,Y ) =
{
(W,K2W

2 + (K1 + 1)W + Y )|W ∈ {0, 1}n
}
.

γ = 2n ⇒ Advcoll
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Conclusion

Presented a new framework to capture blockcipher based hashing.

PGV/BRS results can be derived from it.

Allows for easy generalization for chopping and overloading.

Developed theory for supercharging compression functions.

A new collision resistant rate-1 double length construction.
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