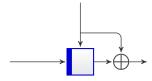
Blockcipher Based Hashing Revisited

Martijn Stam

EPFL - LACAL

FSE

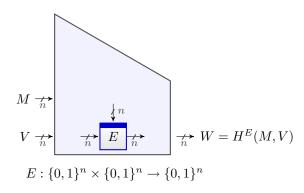
23 February 2009



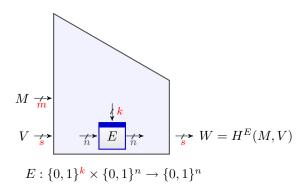
$$X \xrightarrow{n} E \xrightarrow{n} Y$$

$$E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$$

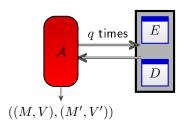
- Block cipher with n-bit key, operating on n bit blocks: $Y = E_K(X)$.
- Compression function H^E from 2n bits to n bits (input consists of n bits message and n bits chaining variable).
- ullet Hash function \mathcal{H}^E using Merkle-Damgård transform



- Block cipher with n-bit key, operating on n bit blocks:
- Compression function H^E from 2n bits to n bits (input consists of n bits message and n bits chaining variable).
- ullet Hash function ${\cal H}^E$ using Merkle-Damgård transform.

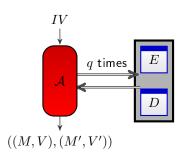


- Block cipher with k-bit key, operating on n bit blocks:
- Compression function ${\cal H}^E$ from m+s bits to s bits (input consists of m bits message and s bits chaining variable).
- ullet Hash function \mathcal{H}^E using Merkle-Damgård transform.



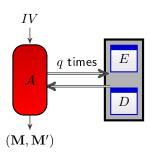
$$\mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) = \Pr\left[(M,V) \neq (M',V') \text{ and } H^E(M,V) = H^E(M',V')\right]$$

Blockcipher Based Hashing Collision resistance: A measure of security



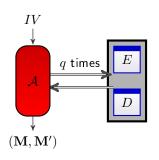
$$\mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) = \Pr\left[(M,V) \neq (M',V') \text{ and } H^E(M,V) = \left. \begin{cases} H^E(M',V') \\ IV \end{cases} \right]$$

Blockcipher Based Hashing Collision resistance: A measure of security



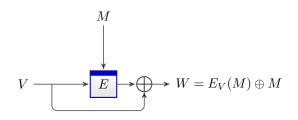
$$\begin{split} \mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) &= \Pr\left[(M,V) \neq (M',V') \text{ and } H^E(M,V) = \left\{ \begin{matrix} H^E(M',V') \\ IV \end{matrix} \right] \right] \\ \mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(\mathcal{A}) &= \max_{IV} \Pr\left[\mathbf{M} \neq \mathbf{M}' \text{ and } \mathcal{H}^E_{IV}(\mathbf{M}) = \mathcal{H}^E_{IV}(\mathbf{M}') \right] \end{split}$$

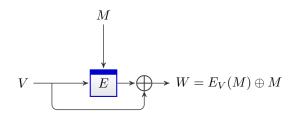
Blockcipher Based Hashing Collision resistance: A measure of security

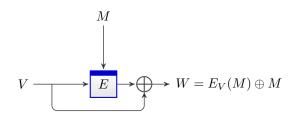


$$\begin{split} \mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) &= \Pr\left[(M,V) \neq (M',V') \text{ and } H^E(M,V) = \left\{ \begin{matrix} H^E(M',V') \\ IV \end{matrix} \right] \right] \\ \mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(\mathcal{A}) &= \max_{IV} \Pr\left[\mathbf{M} \neq \mathbf{M}' \text{ and } \mathcal{H}^E_{IV}(\mathbf{M}) = \mathcal{H}^E_{IV}(\mathbf{M}') \right] \end{split}$$

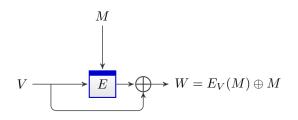
$$\mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(q) \leq \mathsf{Adv}^{\mathsf{coll}}_{H}(q)$$







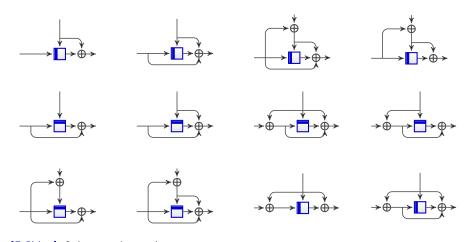
$$\begin{pmatrix} K \\ X \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} M \\ V \end{pmatrix}$$
$$W = Y \oplus \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} M \\ V \end{pmatrix}$$



$$\begin{pmatrix} K \\ X \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} M \\ V \end{pmatrix} = \begin{pmatrix} \mathbf{K} \\ \mathbf{X} \end{pmatrix} \begin{pmatrix} M \\ V \end{pmatrix}$$
$$W = Y \oplus \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} M \\ V \end{pmatrix} = Y \oplus \mathbf{U} \begin{pmatrix} M \\ V \end{pmatrix}$$

Where $\mathbf{K}, \mathbf{X}, \mathbf{U} \in \mathbb{Z}_2^2$. [PGV93]: Examined all $2^6 = 64$ possible schemes, attack-based approach.

12 Collision Resistant Compression Functions

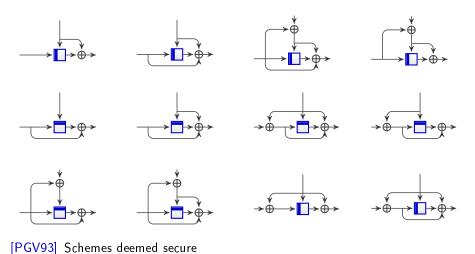


[PGV93] Schemes deemed secure

[BRS02] Provable collision resistance:

 $\operatorname{Adv}_H^{\operatorname{coll}}(q) \le \frac{1}{2}q(q+1)/(2^n-q)$.

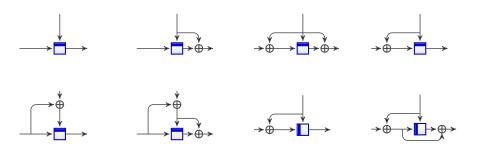
12 Collision Resistant Compression Functions



[BRS02] Provable collision resistance:

 $Adv_H^{coll}(q) \le \frac{1}{2}q(q+1)/(2^n-q)$.

Further 8 Collision Resistant Hash Functions



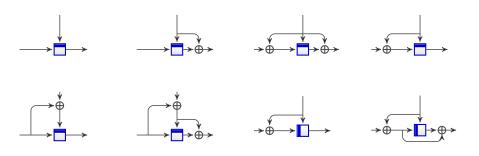
[BRS02] Provable secure in the iteration:

[DL06] Improved hounds:

$$\mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(q) \le 3q(q+1)/2^n$$

$$Adv_{\mathcal{H}}^{\mathsf{coll}}(q) \le \frac{1}{2}q(q+1)/(2^n - q)$$

Further 8 Collision Resistant Hash Functions



[BRS02] Provable secure in the iteration:

[DL06] Improved bounds:

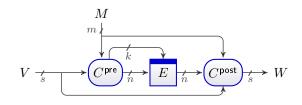
$$\begin{split} \mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(q) & \leq 3q(q+1)/2^n \\ \mathsf{Adv}^{\mathsf{coll}}_{\mathcal{H}}(q) & \leq \frac{1}{2}q(q+1)/(2^n-q) \end{split}$$

Questions

- Why these 12 and 8 schemes?
 What makes them special?
 What do they have in common?
- What happens if for instance
 - we want to chop the output in the end?
 - we want to use addition modulo 2^n instead of XOR?
 - we want to use a blockcipher with keys larger than the blocksize?
 - we want security beyond the blocksize?

Questions

- Why these 12 and 8 schemes?
 What makes them special?
 What do they have in common?
- What happens if for instance
 - we want to chop the output in the end?
 - we want to use addition modulo 2^n instead of XOR?
 - we want to use a blockcipher with keys larger than the blocksize?
 - we want security beyond the blocksize?



Classical: s = n, m + s = n + k

Includes PGV/BRS (for k = n).

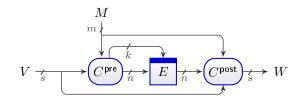
Chopped: s < n, m + s = n + k

Includes Grindahl (for k = 0).

Overloaded: s = n, m + s > n + k

Includes sponges (for k=0).

Supercharged: s > n, m + s = n + k

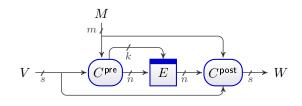


Classical: $s=n, \ m+s=n+k$ Includes PGV/BRS (for k=n).

Chopped: s < n, m + s = n + kIncludes Grindahl (for k = 0).

Overloaded: $s=n, \ m+s>n+k$ includes sponges (for k=0).

Supercharged: s > n, m + s = n + k



Classical: s = n, m + s = n + k

Includes PGV/BRS (for k = n).

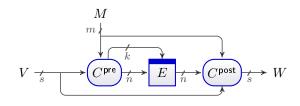
Chopped: s < n, m + s = n + k

Includes Grindahl (for k = 0).

Overloaded: s = n, m + s > n + k

Includes sponges (for k = 0).

Supercharged: s > n, m + s = n + k



Classical: s = n, m + s = n + k

Includes PGV/BRS (for k = n).

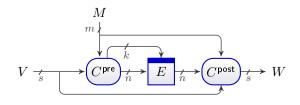
Chopped: s < n, m + s = n + k

Includes Grindahl (for k = 0).

Overloaded: s = n, m + s > n + k

Includes sponges (for k = 0).

Supercharged: s > n, m + s = n + kAllows security beyond the birthday be



Classical: s = n, m + s = n + k

Includes PGV/BRS (for k = n).

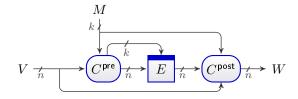
Chopped: s < n, m + s = n + k

Includes Grindahl (for k = 0).

Overloaded: s = n, m + s > n + k

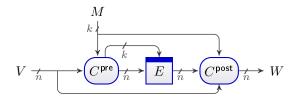
Includes sponges (for k = 0).

Supercharged: s > n, m + s = n + k



Create a list of tuples $V \,\stackrel{\scriptscriptstyle M}{
ightarrow}\, W$ such that $W = H^E(M,V).$ Then

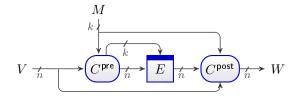
Collision in $H \Leftrightarrow$ "Collision" in list (W-component)



Create a list of tuples $V \stackrel{M}{
ightarrow} W$ such that $W = H^E(M,V)$. Then

Collision in $H \Leftrightarrow$ "Collision" in list (W-component)

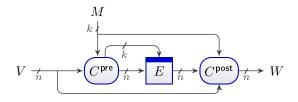
- ullet Minimize the size of this list (given q)
- ullet The W's distributed roughly independent uniform



Create a list of tuples $V \stackrel{M}{\rightarrow} W$ such that $W = H^E(M, V)$. Then

Collision in $H \Leftrightarrow$ "Collision" in list (W-component)

- Minimize the size of this list (given q)
- The W's distributed roughly independent uniform.



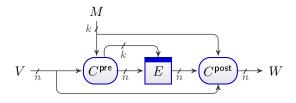
Create a list of tuples $V \stackrel{M}{ o} W$ such that $W = H^E(M,V)$. Then

Collision in $H \Leftrightarrow$ "Collision" in list (W-component)

- Minimize the size of this list (given q)
- The W's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

$$\mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) pprox rac{(\mathsf{Size of list})^2}{2^n}$$



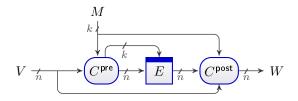
Create a list of tuples $V \stackrel{M}{\rightarrow} W$ such that $W = H^E(M, V)$. Then

Collision in $H \Leftrightarrow$ "Collision" in list (W-component)

- Minimize the size of this list (given q) \Rightarrow C^{pre} bijective.
- ullet The W's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

$$\mathsf{Adv}^{\mathsf{coll}}_H(\mathcal{A}) \approx \frac{(\mathsf{Size of list})^2}{2^n} = \frac{q^2}{2^n}$$



Create a list of tuples $V \stackrel{M}{\rightarrow} W$ such that $W = H^E(M, V)$. Then

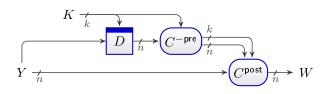
Collision in $H \Leftrightarrow$ "Collision" in list (W-component)

- Minimize the size of this list (given q) \Rightarrow C^{pre} bijective.
- ullet The W's distributed roughly independent uniform.

For forward queries,

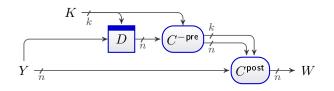
 $C^{\mathsf{post}}(M,V,\cdot):\{0,1\}^n \to \{0,1\}^n$ bijective for all M,V .

Dealing with Decryption Queries Auxiliary function Caux



$$C^{\operatorname{aux}}(K,X,Y) = C^{\operatorname{post}}(C^{-\operatorname{pre}}(K,X),Y)$$

Dealing with Decryption Queries Auxiliary function Caux



$$C^{\operatorname{aux}}(K,X,Y) = C^{\operatorname{post}}(C^{-\operatorname{pre}}(K,X),Y)$$

For inverse queries,

 $C^{\mathsf{aux}}(K,\cdot,Y):\{0,1\}^n \to \{0,1\}^n$ bijective for all K,Y gives $V \overset{M}{\to} W$ with W's distributed roughly independent uniform.

- **1** The preprocessing C^{pre} is bijective.
- ② For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- lacktriangledown For all K,Y the modified postprocessing $C^{\mathsf{aux}}(K,\cdot,Y)$ is bijective.

- ① The preprocessing C^{pre} is bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{X}}$ is invertible (6 possible matrices).
- **③** For all K, Y the modified postprocessing $C^{\mathsf{aux}}(K, \cdot, Y)$ is bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{U}}$ is invertible (2 possibilities per matrix).

- ① The preprocessing C^{pre} is bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{x}}$ is invertible (6 possible matrices).
- **③** For all K, Y the modified postprocessing $C^{\mathsf{aux}}(K, \cdot, Y)$ is bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{U}}$ is invertible (2 possibilities per matrix).
- \Rightarrow Gives exactly the 12 Type-I PGV schemes.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of $V \stackrel{M}{\rightarrow} W$ satisfy:

- **1** Minimize the size of this list (given q) \Rightarrow C^{pre} bijective.
- ② For a forward query W is distributed roughly independent uniform \Rightarrow For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- ${ t @}$ For an inverse query V is distributed roughly independent uniform

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of $V \stackrel{M}{\rightarrow} W$ satisfy:

- **1** Minimize the size of this list (given q) \Rightarrow C^{pre} bijective.
- ② For a forward query W is distributed roughly independent uniform \Rightarrow For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- lacktriangle For an inverse query $oldsymbol{V}$ is distributed roughly independent uniform

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of $V \stackrel{M}{\rightarrow} W$ satisfy:

- **1** Minimize the size of this list (given q) \Rightarrow C^{pre} bijective.
- ② For a forward query W is distributed roughly independent uniform \Rightarrow For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- **③** For an inverse query V is distributed roughly independent uniform For all K, $C^{-\operatorname{pre}}(K,\cdot)$ restricted to V is bijective.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of $V \stackrel{M}{\rightarrow} W$ satisfy:

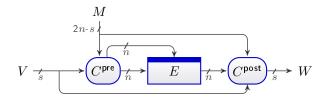
- ① Minimize the size of this list (given q) $\Rightarrow C^{\text{pre}}$ bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{X}}$ is invertible (6 matrices possible).
- ② For a forward query W is distributed roughly independent uniform \Rightarrow For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- **③** For an inverse query V is distributed roughly independent uniform For all K, C^{-pre}(K,·) restricted to V is bijective.
 [PGV/BRS] The key is message dependent, K = M or K = M ⊕ V.
 ⇒ Only 4 matrices possible, U unrestricted.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of $V \stackrel{M}{\rightarrow} W$ satisfy:

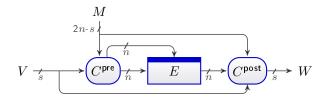
- ① Minimize the size of this list (given q) $\Rightarrow C^{\text{pre}}$ bijective. [PGV/BRS] $\binom{\mathbf{K}}{\mathbf{X}}$ is invertible (6 matrices possible).
- ② For a forward query W is distributed roughly independent uniform \Rightarrow For all M,V the postprocessing $C^{\mathsf{post}}(M,V,\cdot)$ is bijective.
- \Rightarrow 16 Type-II schemes: 8 as identified by [BRS02] + 8 that are Type-I.

Chopped Compression Functions (s < n)



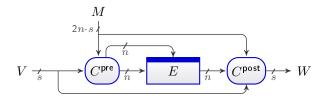
- **1** The preprocessing C^{pre} is bijective.
- ② For all $M, V : C^{\mathsf{post}}(M, V, \cdot)$ is bijective
- **3** For all $K,Y : C^{\mathsf{aux}}(K,\cdot,Y)$ is bijective

Chopped Compression Functions (s < n)



- **1** The preprocessing C^{pre} is bijective.
- ② For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective balanced .
- lacksquare For all $K,Y\colon C^{\mathsf{aux}}(K,\cdot,Y)$ is bijective balanced .

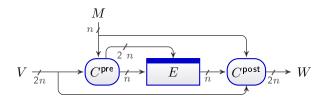
Chopped Compression Functions (s < n)



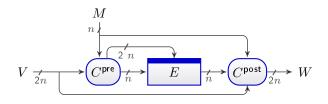
- **1** The preprocessing C^{pre} is bijective.
- ② For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective balanced .

$$\mathsf{Adv}^{\mathsf{coll}}_H(q) \le q(q+1)/2^s$$

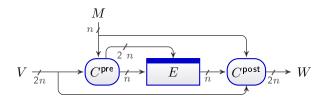
Immediate consequence: chopping e.g., Davies-Meyer is secure.



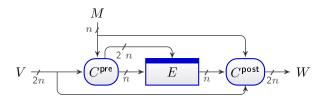
- **1** The preprocessing C^{pre} is bijective.
- ② For all $M,V \colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective
- lacksquare For all $K,Y\colon C^{\mathsf{aux}}(K,\cdot,Y)$ is bijective



- **1** The preprocessing C^{pre} is bijective.
- 2 For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective injective .
- $\ \, \mbox{ For all } K,Y\colon C^{\rm aux}(K,\cdot,Y) \mbox{ is } \mbox{ bijective injective }.$

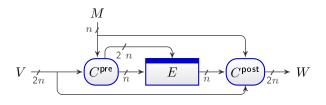


- **1** The preprocessing C^{pre} is bijective.
- ② For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective injective . Range denoted by $R_{\mathsf{pre},(M,V)}$
- $\ \ \, \ \ \,$ For all $K,Y\colon C^{\mathsf{aux}}(K,\cdot,Y)$ is $\ \ \,$ bijective injective . Range denoted by $R_{\mathsf{aux},(K,Y)}$



- **1** The preprocessing C^{pre} is bijective.
- $\ensuremath{\mathbf{Q}}$ For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective injective . Range denoted by $R_{\mathsf{pre},(M,V)}$

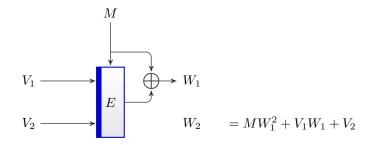
$$\gamma = \max \left\{ |R_Z \cap R_{Z'}| : Z, Z' \in \{\mathsf{pre}, \mathsf{aux}\} \times \{0,1\}^{2n+n}, Z \neq Z' \right\}$$

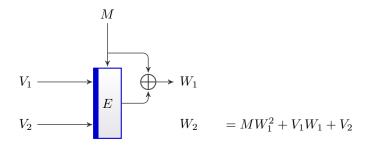


- **1** The preprocessing C^{pre} is bijective.
- ② For all $M,V\colon C^{\mathsf{post}}(M,V,\cdot)$ is bijective injective . Range denoted by $R_{\mathsf{pre},(M,V)}$
- \bullet For all $K,Y \colon C^{\mathsf{aux}}(K,\cdot,Y)$ is bijective injective . Range denoted by $R_{\mathsf{aux},(K,Y)}$

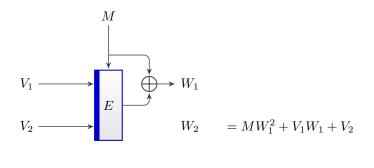
$$\gamma = \max\left\{|R_Z \cap R_{Z'}|: Z, Z' \in \{\text{pre}, \text{aux}\} \times \{0, 1\}^{2n+n}, Z \neq Z'\right\}$$

$$\mathsf{Adv}^{\mathsf{coll}}_H(q) \leq \frac{\gamma^{1/2} nq}{2n-6}$$



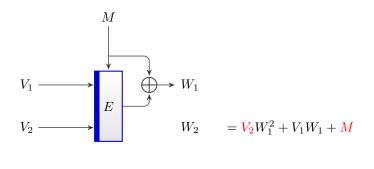


$$\begin{split} R_{\mathrm{pre},(M,V_1,V_2)} &= \left\{ (W,MW^2 + V_1W + V_2) | W \in \{0,1\}^n \right\} \\ R_{\mathrm{aux},(K_1,K_2,Y)} &= \left\{ (W,W^3 + YW^2 + K_1W + K_2) | W \in \{0,1\}^n \right\} \;. \end{split}$$



$$\begin{split} R_{\mathrm{pre},(M,V_1,V_2)} &= \left\{ (W,MW^2 + V_1W + V_2) | W \in \{0,1\}^n \right\} \\ R_{\mathrm{aux},(K_1,K_2,Y)} &= \left\{ (W,W^3 + YW^2 + K_1W + K_2) | W \in \{0,1\}^n \right\} \;. \end{split}$$

$$\gamma = 3 \quad \Rightarrow \quad \mathsf{Adv}^{\mathsf{coll}}_H(q) \le 2(4n+2)q/2^n \ .$$



$$\begin{split} R_{\mathrm{pre},(M,V_1,V_2)} &= \left\{ (W,V_2W^2 + V_1W + M) | W \in \{0,1\}^n \right\} \\ R_{\mathrm{aux},(K_1,K_2,Y)} &= \left\{ (W,K_2W^2 + (K_1+1)W + Y) | W \in \{0,1\}^n \right\} \ . \end{split}$$

$$\gamma = 2^n \quad \Rightarrow \quad \operatorname{Adv}_H^{\operatorname{coll}}(q) \le 2(4n+2)q/2^{n/2} \ .$$

Conclusion

- Presented a new framework to capture blockcipher based hashing.
- PGV/BRS results can be derived from it.
- Allows for easy generalization for chopping and overloading.
- Developed theory for supercharging compression functions.
- A new collision resistant rate-1 double length construction.