Blockcipher Based Hashing Revisited

Martijn Stam

EPFL - LACAL

FSE

23 February 2009

L

—’D_’EB—’

Blockcipher Based Hashing
The principle idea

K

In
Xp| By

E:{0,1}" x {0,1}" — {0,1}"

@ Block cipher with n-bit key, operating on n bit blocks: ¥ = Ex (X).

Blockcipher Based Hashing
The principle idea

E:{0,1}" x {0,1}" — {0,1}"

o Block cipher with n-bit key, operating on n bit blocks:

o Compression function HZ from 2n bits to n bits
(input consists of n bits message and n bits chaining variable).

o Hash function H” using Merkle-Damgard transform.

Blockcipher Based Hashing
The principle idea

M >

4k
V _7’{’ -+ W =H"(M,V)

E:{0,1}* x {0,1}" — {0,1}"

o Block cipher with k-bit key, operating on n bit blocks:

o Compression function H¥ from m + s bits to s bits
(input consists of m bits message and s bits chaining variable).

@ Hash function H¥ using Merkle-Damgard transform.

Blockcipher Based Hashing
Collision resistance: A measure of security

((M, V), (M', V"))

Advy"(A) = Pr [(M,V) # (M', V') and H¥(M, V) = HE(M', V)]

Blockcipher Based Hashing
Collision resistance: A measure of security

(M, V), (M, V"))

Adv?'(A) = Pr [(M,V) # (M', V') and HE(M,V) = {HE(%I’V')]

Blockcipher Based Hashing
Collision resistance: A measure of security

(M, M)

AV (A) = Pr [(M,V) # (M', V') and HP (M, V) = {HE(MI’V'>]

v

Adv§S"(A) = max Pr [M # M’ and HE, (M) = HE, (M)]

Blockcipher Based Hashing
Collision resistance: A measure of security

(M, M)

AV (A) = Pr [(M,V) # (M', V') and HP (M, V) = {HE(MI’V'>]

v

Adv§S"(A) = max Pr [M # M’ and HE, (M) = HE, (M)]

AdviE"(q) < AdvE"(0)

Example: Davies-Meyer Construction
M

als

Il
<

<

Example: Davies-Meyer Construction
M

als
I

0-
1

SS?)

1-M
0-M
M

<= =<

= Yo 0 o 1-

|
-6 ()

W=Ya(0 1)-(]‘5)

Example: Davies-Meyer Construction

M

Where K, X, U € Z3.
[PGV93]: Examined all 26 = 64 possible schemes, attack-based approach.

12 Collision Resistant Compression Functions

ke o O Ch
| R e = e

e e el ~éolhe

G, [b s

[PGV93] Schemes deemed secure

12 Collision Resistant Compression Functions

ke o O Ch
| R e = e

e e el ~éolhe

G, [b s

[PGV93] Schemes deemed secure
[BRS02] Provable collision resistance: Advd'(q) < salg+1)/(2" —q) .

Further 8 Collision Resistant Hash Functions

i =

EL ﬁzj‘e» >e—— *@{_l_@*

[BRS02] Provable secure in the iteration: Advs'(q) < 3q(q+1)/2"

7

!

Further 8 Collision Resistant Hash Functions

|
!
l
0
:
!
0
d

EL ﬁzj‘e» e—— *@{_l_@*

[BRS02] Provable secure in the iteration: AdvsY"(q) < 3q¢(q +1)/2"
[DLO6] Improved bounds: Adv$S'(q) < Lq(g+1)/(2" - q)

l |

o Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

l |

o Why these 12 and 8 schemes?
What makes them special?
What do they have in common?

o What happens if for instance

we want to chop the output in the end?

we want to use addition modulo 2" instead of XOR?

we want to use a blockcipher with keys larger than the blocksize?
we want security beyond the blocksize?

General Single Call Scenario

M
m{

IN |
@ e @ v

General Single Call Scenario

M
m{

IN !
@ e @ v

Classical: s=n, m+s=n+k
Includes PGV/BRS (for k = n).

General Single Call Scenario

M
m{

IN !
@ e @ v

Classical: s=n, m+s=n+k

Includes PGV/BRS (for k = n).
Chopped: s<n,m+s=n+k

Includes Grindahl (for k = 0).

General Single Call Scenario

M
m{

IN !
@ e @ v

Classical: s=n, m+s=n+k
Includes PGV/BRS (for k = n).
Chopped: s<n,m+s=n+k
Includes Grindahl (for k = 0).
Overloaded: s=n, m+s>n+k
Includes sponges (for k = 0).

General Single Call Scenario

M
m{

IN !
@ e @ v

Classical: s=n, m+s=n+k
Includes PGV/BRS (for k = n).

Chopped: s<n,m+s=n+k
Includes Grindahl (for k = 0).

Overloaded: s=n, m+s>n+k
Includes sponges (for k = 0).

Supercharged: s >n, m+s=n+k
Allows security beyond the birthday bound!

Type I: Secure Compression (Classical)

M

k{
))}
e

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

Type I: Secure Compression (Classical)

M

k{
))}
e

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

o Minimize the size of this list (given ¢)

Type I: Secure Compression (Classical)

M

k{
))}
e

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

o Minimize the size of this list (given ¢)
o The W's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

M

k{
))}
S

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

o Minimize the size of this list (given ¢)
o The W's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

(Size of list)?

Adv"(A) ~ o

Type I: Secure Compression (Classical)

M

k{
))}
S

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)

o Minimize the size of this list (given ¢) = CP*® bijective.
o The W's distributed roughly independent uniform.

Then you might expect birthday bound behaviour

Adv(;_?”(A) ~ (SiZe ;: ||St)2 _ ;_Z

Type I: Secure Compression (Classical)

M

k{
))}
S

Create a list of tuples V' % W such that W = H¥ (M, V). Then

Collision in H < “Collision” in list (W-component)
o Minimize the size of this list (given ¢) = CP*® bijective.

o The W's distributed roughly independent uniform.

For forward queries,
CPOSY (M, V,-) : {0,1}™ — {0, 1}™ bijective for all M,V.

Dealing with Decryption Queries

Auxiliary function C?34%

C(K, X, Y) = CP®(C"(K, X),Y)

Dealing with Decryption Queries

Auxiliary function C?34%

C(K, X, Y) = CP®(C"(K, X),Y)

For inverse queries,
C*™(K,-,Y):{0,1}™ — {0,1}"™ bijective for all K, Y
gives V' 5 W with W's distributed roughly independent uniform.

Type I: Secure Compression (Classical)

@ The preprocessing CP™ is bijective.
@ For all M,V the postprocessing CP°'(M,V,-) is bijective.

@ For all K,Y the modified postprocessing C*"*(K,-,Y) is bijective.

Type I: Secure Compression (Classical)

@ The preprocessing CP™ is bijective.
[PGV/BRS] (¥) is invertible (6 possible matrices).

@ For all M,V the postprocessing CP°'(M,V,-) is bijective.
[PGV/BRS] Automatically satisfied.

@ For all K,Y the modified postprocessing C*"*(K,-,Y) is bijective.
[PGV/BRS] (E) is invertible (2 possibilities per matrix).

Type I: Secure Compression (Classical)

@ The preprocessing CP™ is bijective.
[PGV/BRS] (¥) is invertible (6 possible matrices).

@ For all M,V the postprocessing CP°'(M,V,-) is bijective.
[PGV/BRS] Automatically satisfied.

@ For all K,Y the modified postprocessing C*"*(K,-,Y) is bijective.
[PGV/BRS] (E) is invertible (2 possibilities per matrix).

= Gives exactly the 12 Type-l PGV schemes.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:
@ Minimize the size of this list (given ¢) = CP* bijective.

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V,) is bijective.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:
@ Minimize the size of this list (given ¢) = CP* bijective.

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V,) is bijective.

@ For an inverse query V is distributed roughly independent uniform

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:
@ Minimize the size of this list (given ¢) = CP* bijective.

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V,) is bijective.

@ For an inverse query V is distributed roughly independent uniform
For all K, CP*(K,) restricted to V is bijective.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:

@ Minimize the size of this list (given ¢) = CP* bijective.
[PGV/BRS] (%) is invertible (6 matrices possible).

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V,) is bijective.

@ For an inverse query V is distributed roughly independent uniform
For all K, C7P*(K, ") restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M @ V.
= Only 4 matrices possible, U unrestricted.

Type II: Security in the Iteration (Classical)

The Duo-Li proof technique uses that list of V' = W satisfy:

@ Minimize the size of this list (given ¢) = CP* bijective.
[PGV/BRS] (%) is invertible (6 matrices possible).

@ For a forward query W is distributed roughly independent uniform
= For all M,V the postprocessing CP°*(M,V,) is bijective.

@ For an inverse query V is distributed roughly independent uniform
For all K, C7P*(K, ") restricted to V is bijective.
[PGV/BRS] The key is message dependent, K = M or K = M @ V.
= Only 4 matrices possible, U unrestricted.

= 16 Type-ll schemes: 8 as identified by [BRS02] + 8 that are Type-I.

Chopped Compression Functions (s < n)

M
2n—s.}

I !
e I o

@ The preprocessing CP™ is bijective.
@ For all M,V: CP°*(M,V,-)is bijective

@ Forall K,Y: C*"™(K,-,Y) is bijective

Chopped Compression Functions (s < n)

M
2n—s.}

I !
e I o

@ The preprocessing CP™ is bijective.

Q@ Forall M,V: CPSY(M,V,-) is M balanced .
@ Forall K)Y: C*"(K,-,Y) is M balanced .

Chopped Compression Functions (s < n)

M
2n—s.}

IN !
e I o

@ The preprocessing CP™ is bijective.

Q@ Forall M,V: CPSY(M,V,-) is M balanced .
@ Forall K)Y: C*"(K,-,Y) is M balanced .

Adv'(q) < q(q+1)/2°

Immediate consequence: chopping e.g., Davies-Meyer is secure.

Supercharged Compression Functions
Specified for the double-length scenario

M
n{

Y)

@ The preprocessing CP™ is bijective.
@ For all M,V: CP°SY(M,V,-)is bijective

@ Forall K)Y: C*(K,-,Y)is bijective

Supercharged Compression Functions
Specified for the double-length scenario

M
n{

l 2n 1

@ The preprocessing CP™ is bijective.

@ For all M,V: CPSY(M,V,-) is M injective .

© Forall K,Y: C*(K,-Y) is M injective .

Supercharged Compression Functions
Specified for the double-length scenario

M
n{

l 2n 1

@ The preprocessing CP™ is bijective.

@ For all M,V: CPSY(M,V,-) is M injective .

Range denoted by R (ar,v)

© Forall K,Y: C*(K,-Y) is M injective .

Range denoted by R,y (k. v)

Supercharged Compression Functions
Specified for the double-length scenario

M
n{

l 2n 1

@ The preprocessing CP™ is bijective.

@ For all M,V: CPSY(M,V,-) is M injective .

Range denoted by R (ar,v)
© Forall K,Y: C*(K,-Y) is M injective .
Range denoted by R,y (k. v)
y=max{|Rz N Ry|: Z Z" € {pre,aux} x {0,1}*"*" Z + 7'}

Supercharged Compression Functions
Specified for the double-length scenario

M
n{

l 2n 1

@ The preprocessing CP™ is bijective.

@ For all M,V: CPSY(M,V,-) is M injective .

Range denoted by R (ar,v)
© Forall K,Y: C*(K,-Y) is M injective .
Range denoted by R,y (k. v)
y=max{|Rz N Ry|: Z Z" € {pre,aux} x {0,1}*"*" Z + 7'}

7/2ng

AdviF'(9) < 5

A Rate-1 Double-Length Compression Function

Collision Resistance

v] &-m
FE
Vo ————> Wy ZMW12+VlW1+V2

A Rate-1 Double-Length Compression Function

Collision Resistance

v] &-m
FE
Vo ————> Wy ZMW12+VlW1+V2

Rpre,(M,Vl,Vz) = {(VV: MW2 + ‘/IW + ‘/2)|W S {07 1}n}
Raw (5 Kay) = LW, W3 + YW?2 + KGW + Ko)|W € {0,1}"} .

A Rate-1 Double-Length Compression Function

Collision Resistance

Vi ——— B— M
FE
Vo ————> Wy ZMW12+VlW1+V2

Rpre,(M,Vl,Vz) = {(VV: MW2 + ‘/IW + ‘/2)|W € {07 1}n}
Raw (5 Kay) = LW, W3 + YW?2 + KGW + Ko)|W € {0,1}"} .

v=3 = Advg'(q) <2(4n+2)q/2" .

A Rate-1 Double-Length Compression Function

Collision Resistance

Vi —— B M
E
Vo ——— Wy, =VW2HViWi+ M

Ruve,(vvi,v2) = { (W, VaW? + VIW + M)|W € {0,1}"}
Raux, (K1, Ko, v) = { (W, KoW? 4 (K1 + L)W + Y)|W € {0,1}"} .

y=2" = Adv'(q) < 2(4n+2)q/2"? .

Conclusion

Presented a new framework to capture blockcipher based hashing.
PGV/BRS results can be derived from it.

Allows for easy generalization for chopping and overloading.
Developed theory for supercharging compression functions.

A new collision resistant rate-1 double length construction.

	History of Blockcipher Based Hashing
	Revisiting the Classical Scenario
	Extending the Results

