
Introduction
Main Results

Conclusions

On the Salsa20 Core Function

Julio Cesar Hernandez-Castro Juan M. E. Tapiador
Jean-Jacques Quisquater

Crypto Group DICE – Universite Catholique de Louvain
Computer Science Department – Carlos III University of Madrid

February 13, 2008



Introduction
Main Results

Conclusions

Abstract
The Salsa20 core

Abstract

We point out some weaknesses in the Salsa20 core function

These could be exploited to obtain up to 231 collisions for its
full (20 rounds) version

We find an invariant for its main building block, the
quarterround function, then extended to the rowround,
columnround and doubleround functions
We find a subset of size 232 for which the Salsa20 core behaves
exactly as the transformation f (x) = 2x
An attacker can take advantage of this for constructing 231

collisions for any number of rounds

We finally show another weakness in the form of a differential
characteristic with probability one, that proves the Salsa20
core does not have 2nd preimage resistance.



Introduction
Main Results

Conclusions

Abstract
The Salsa20 core

Salsa20 design

Salsa20 is a design by D. Bernstein

Nowadays mostly known because of its submission to the
eSTREAM Project, where it passed to Phase 3 without major
known attacks:

“The core of Salsa20 is a hash function with 64-byte
input and 64-byte output. The hash function is used
in counter mode as a stream cipher: Salsa20
encrypts a 64-byte block of plaintext by hashing the
key, nonce, and block number and xor’ing the result
with the plaintext.”

Note, however, that in spite of its name, the Salsa20 “hash”
function was never really intended for hashing.

Some interesting weaknesses over reduced-round versions have
recently been pointed out



Introduction
Main Results

Conclusions

Abstract
The Salsa20 core

Salsa20 design

Salsa20 represents quite an original and flexible design

The author justifies the use of very simple operations
(addition, xor, constant-distance rotation) and the lack of
multiplication or S-boxes

This helps to develop a very fast primitive that is also, by
construction, immune to timing attacks.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The quarterround function

The main building block of Salsa20 is the quarterround function,
defined as follows:

If y =

(
y0 y1

y2 y3

)
then quarterround(y) =

(
z0 z1

z2 z3

)
, where:

z1 = y1 ⊕ ((y0 + y3) ≪ 7) (1)

z2 = y2 ⊕ ((z1 + y0) ≪ 9) (2)

z3 = y3 ⊕ ((z2 + z1) ≪ 13) (3)

z0 = y0 ⊕ ((z3 + z2) ≪ 18) (4)

and X ≪ n is the rotation of the 32-bit word X to the left by n
positions.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The quarterround function

Theorem 1. For any 32-bit value A, an input of the form(
A −A
A −A

)
is left invariant by the quarterround function,

where −A represents the only 32-bit integer satisfying
A + (−A) = 0 (mod 232).
Proof. Simply by substituting in the equations above, we obtain
that every rotation operates over the null vector, so zi = yi for
every i ∈ (0..3)



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The rowround function

Similarly, the rowround function, defined below, suffers from the
same problem:

If y =


y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

 then

rowround(y) =


z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

 where:

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3) (5)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4) (6)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9) (7)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14) (8)



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The rowround function

Theorem 2.: Any input of the form


A −A A −A
B −B B −B
C −C C −C
D −D D −D

, for

any 32-bit values A, B, C and D, is left invariant by the rowround
transformation.
Proof. This trivially follows from the repeated application of
Theorem 1 to the four equations in the definition of rowround.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The rowround function: Other possibilities

Remark. It is important to note that any other
rearrangement of the equations from its canonical form:

(z4i , z4i+1, z4i+2, z4i+3) = quarterround(y4i , y4i+1, y4i+2, y4i+3)

will suffer from the same problem whenever the rearranging
permutation keeps on alternating subindex oddness.

This implies that, from the 2512 possible inputs, at least one
easily characterizable subset of size 2128 remains invariant by
rowround.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The columnround function

The same happens with the columnround function, which is
defined below:

If y =


y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

 then

columnround(y) =


z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

 where:

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12) (9)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1) (10)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6) (11)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11) (12)



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The columnround function

Theorem 3.: Any input of the form


A −B C −D
−A B −C D
A −B C −D
−A B −C D

,

for any 32-bit values A, B, C and D, is left invariant by the
columnround transformation.
Proof. This follows directly from the repeated application of
Theorem 1, and can be seen as a dual of Theorem 2



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

The doubleround function

Theorem 4.: Any input of the form


A −A A −A
−A A −A A
A −A A −A
−A A −A A

 for

any 32-bit value A, is left invariant by the doubleround
transformation.
Proof. This is quite obvious. The point is that, due to the
arrangement of the indexes in the columnround and the
rowround function, we cannot have as free a hand. Here we are
forced to make B = −A, C = A, and D = −A.
As doubleround is defined as the composition of a columnround
and a rowround operation:

doubleround(x) = rowround(columnround(x)) (13)

a common fixed point should be also a fixed point of its
composition.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding

Theorem 5.: For any input of the form


A −A A −A
−A A −A A
A −A A −A
−A A −A A


and for any 32-bit value A, the Salsa20 core function behaves as a
linear transformation of the form f (x) = 2x , and this happens
independently of the number of rounds.
Proof. As the Salsa20 “hash” is defined as:

Salsa20(x) = x + doubleround10(x) (14)

and every input of the said form is an invariant (fixed point) for
the doubleround function, then:

Salsa20(x) = x + doubleround10(x) = x + x = 2x (15)

(And this happens independently of the number of rounds)



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding

The previous result is of great use in collision finding. All
what is left now is to find two different nontrivial inputs, x
and x ′, of the said form such that:

x 6= x ′ but 2x = 2x ′ (16)

Fortunately, this is possible thanks to modular magic, i.e. the
fact that all operations in Salsa20 are performed mod 232.

Let us assume that X is a 32-bit integer such that X < 231.
Then, we define X ′ = X + 231. The interesting point here is
that, even though X 6= X ′, 2X = 2X ′ (mod 232).



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding

Theorem 6.: Any pair of inputs


Z −Z Z −Z
−Z Z −Z Z
Z −Z Z −Z
−Z Z −Z Z

 and


Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′

Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′

, such that Z < 231 and

Z ′ = Z + 231, generate a collision for any number of rounds of the
Salsa20 “hash” function, producing

2Z −2Z 2Z −2Z
−2Z 2Z −2Z 2Z

2Z −2Z 2Z −2Z
−2Z 2Z −2Z 2Z

 as a common hash value.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding

Proof. This follows directly from the last observations and
definitions. Substitution of the proposed input values into the
formulæ for the Salsa20 “hash” will confirm this hypothesis.
Remark: Theorem 6 implies that there are at least (these
conditions are sufficient but probably not necessary) 231 input pairs
that generate a collision in the output, proving that indeed Salsa20
is not to be used as-is as a hash function.
As an example, two of these pairs are provided in the Appendix.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding: A-states

Let us call inputs of the said form A-states.

Then, the Salsa20 output of any A-state is also an A-state
(where, in this case, A is even).

It could be interesting to check whether these states could be
reached at any intermediate step during a computation
beginning with a non-A state. This would have important
security implications.

However, it could be easily shown that this is not the case, so
any state leading to an A-state should be an A-state itself.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding: A-states

This property has an interesting similitude with Finney-states
for RC4 and could be useful in mounting an impossible fault
analysis for the Salsa20 stream cipher, as Finney-states were of
key importance on the impossible fault cryptanalysis of RC4.

A-states, on the other hand, have the interesting advantage
over Finney-states that their influence over the output is
immediately recognized, so they can be detected in an even
simpler way.

However, is much less likely to reach an A-state by simply
injecting random faults, as the set of conditions that should
hold is larger than for the RC4 case.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

Collision finding

Once we have shown that the Salsa20 core function is not
collision resistant, we focus on its security against 2nd

preimage attacks.

Next result reveals that 2nd preimage attacks are not only
possible but even easy.

This property was presented informally before by Robshaw and
later by Wagner [Message in the sci.crypt newsgroup on
September 26th, 2005]



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

2nd preimage attack

Theorem 7.: Every pair of inputs A, B with a difference of
A− B = A

⊕
B =

0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000


will produce the same output over any number of Salsa20 rounds.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

2nd preimage attack

Proof. This depends on a couple of interesting observations.

The first one is that addition behaves as xor over the most
significant bit (that changed by adding 0x80000000).

So the result in each of the four additions on quarterround is
the same when both its inputs are altered by adding 231

(differences cancel out mod 232).

The second one is that in the quarterround function, all
partial results z0, ...z3 are computed after an odd number
(three in this case) of addition/xor operations.

This has as a result that quarterround conserves the input
difference, and so it does rowround, columnround and
doubleround.
As in the last stage of the Salsa20 core function the input is
added to the output, cancelling out input differences.



Introduction
Main Results

Conclusions

Weaknesses in the building blocks of Salsa20
Application to collision finding
2nd preimage attack

2nd preimage attack

Theorem 6 could be now seen as a particular instance of this
result (because 2 ∗ 0x80000000 = 0x00000000).

This result has some points in common with that on the
existence of equivalent keys for TEA made by Kelsey et al., and
also with the exact truncated differential found by Crowley.
A direct consequence of this result is that the effective
key/input space of the Salsa20 core is reduced by half, so there
is a speed up by a factor of 2 in any exhaustive key/input
search attack.
This also means that Salsa20(x) = y has solution for no more
than (at most) half of the possible y’s (Dunkelman)



Introduction
Main Results

Conclusions
Final conclusions

Conclusions

Although the Salsa20 “hash” function was never intended for
cryptographic hashing

some previous results showed that finding a good differential
for the core function was not as hard as might have been
expected.

Even though its author acknowledges that the Salsa20 core is
not collision-free

no work has so far focused on finding and characterizing these
collisions

In this paper we explicitly show that there is a relevant
amount (231) of easily characterizable collisions, together with
an undesirable linear behavior over a large subset of the input
space

In a sense, Theorem 6 is a generalization of Robshaw’s
previous observation



Introduction
Main Results

Conclusions
Final conclusions

Conclusions: Implications to the Salsa20 stream cipher

Since the stream cipher uses four diagonal constants to limit
the attacker’s control over the input (thus making
unreachable the differences needed for a collision), these
results have no straightforward implications on its security.

However, these undesirable structural properties might be
useful to mount an impossible fault attack for the stream
cipher. Particularly, what we have called A-states could play a
role analogous to Finney states for RC4, in way similar to that
presented by Biham et al. at FSE’05.

We consider this as an interesting direction for future research.



Introduction
Main Results

Conclusions
Final conclusions

Conclusions: Possible improvements

That being said, we still consider that Salsa20 design is very
innovative and well-motivated. Further work along the same
guidelines should be encouraged.

Particularly, we believe that a new, perhaps more complex and
time consuming definition of the quarterround function
should lead to a primitive that would not be vulnerable to any
of these weaknesses and could, in fact, provide a high-level
security algorithm.

This will, obviously, be more computationally expensive, but
there may exist an interesting trade-off between incrementing
the complexity of the quarterround function and decreasing
the total number of rounds.



Introduction
Main Results

Conclusions
Final conclusions

Conclusions: Possible improvements

The use of the add-rotate-xor chain at every stage of the
quarterround function considerably eases the extension of
these bad properties to any number of rounds.

Although the author justified this approach because of
performance reasons, we believe that alternating this structure
with xor-rotate-add and making all output words depending
on all input words will present the cryptanalyst with a much
more difficult task.

This should be the subject of further study

ChaCha?
Xalxa?



Introduction
Main Results

Conclusions
Final conclusions

Conclusions: Possible improvements

On the other hand, in the light of our results we can also
conclude that the inclusion of the diagonal constants is
absolutely mandatory.

An additional idea derived from our results is that less
diagonal constants might suffice for stopping these kinds of
undesirable structural properties

with a significant efficiency improvement

that can vary from a 16% (from processing 384 bits to 448
bits in the same amount of time, that is, using only two
diagonal constants)
up to a 33% (in the extreme case of fixing the most significant
bit of two diagonal 32-bit values)



Introduction
Main Results

Conclusions
Final conclusions

Thanks!

Any Questions?


	Introduction
	Abstract
	The Salsa20 core

	Main Results
	Weaknesses in the building blocks of Salsa20
	Application to collision finding
	2nd preimage attack

	Conclusions
	Final conclusions


