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Part 1
FCSR



Context

» Feedback with Carry Shift Registers (FCSRs):

e Similar to LFSRs but instead of XORs they use additions with carry.
e Introduced by [Goresky Klapper 93], [Marsaglia Zamand 91] and
[Couture L’Ecuyer 94].

» Binary FCSRs in Galois architecture [Goresky Klapper 02].

» Used in the eSTREAM candidate F-FCSR [Arnault et al. 05].

» Entropy of inner state when all values for the initial states are allowed, e.g

first version of F-FSCR-8.
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FCSRs

» The output of an FCSR is the 2-adic expansion of

< 0.

QRS

» The output of an FCSR has the maximal period of |q| — 1 if and only if 2 has
order |g| — 1 modulo q.
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FCSR in Galois architecture (1)
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» n: Size of main register.

» 2" > d > 2" 1 Integer which determines the feedback positions.
Carry bit if dz = 1.

» (m(t),c(t)): State at time t with
e m(t) = Z?:_Ol m;(t)2%: 2-adic expansion of the main register.

o c(t) = Z?:_ol c;(t)2%: 2-adic expansion of the carry register,
where ¢;(t) = 0 for d; = 0.

» Inour case: ¢=1—2d <0 andp=m(0)+2c(0) <|q|.
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FCSR in Galois architecture (2)
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» Update function:

Mmp_1(t+1) = mg(t),
di=1:m;(t+1) = (mo(t) + ci(t) + mip1(t)) mod 2,
ci(t +1) = (mo(t) +cit) + mipa(t) +2,
di=0:m;(t+1) = m;r1(1).
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Entropy
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» \We have

e n bits in the main register and
o { = HammingW eight(d) — 1 carry bits.

» Initial Entropy: n + £ bits.
» Entropy after one iteration:  H(1).
» Final Entropy: HT.
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Part 2

Entropy after one lteration



ldea

» Initial entropy: n + /.
» Question: Entropy loss after one iteration?
» Method:

e Counting the number of (m(0), ¢(0))'s which produce the same (m(1),¢(1)).

e Using the equations of the update function.
e Only possible if there are positions ¢ such that d; = 1 and

» Entropy after one iteration:
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Part 3
Final Entropy



Final Entropy

» Goal: Entropy when we reached the cycle.

» Proposition [Arnault Berger Minier 08]: Two states (m,c) and (m/, )
are equivalent, i.e. m + 2c = m’ + 2¢" = p, if and only if they eventually
converge to the same state after the same number of iterations.

» ldea: How many (m,c)'s create the same p = m + 2¢?

v(p)

» Probability: SR

where v(p) = #{(m,c)|m + 2c = p} for all 0 < p < q|.

» Final Entropy:
4]

n-+/¢
f v(p) 2
H’ = E ot log, (

= v(p)

%I INRIA 7/12



Algorithm (1)

» Method: Get v(p) by looking at bit per bit addition of m and 2c.

;
2¢ 0 0 01 0
m OO0/ 1/0/0|1|1/1/0/110
| 1 1 1
p 0/0/0]1/0]0/0/0]0]0|1]0

— |
— |
— |
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Algorithm (2)

» 4 different Cases: ¢ = [log,(p)].

e Casel: 1<i<nandd;_; =0.
e Case 2: 1 <i<nandd;,_; =1.
e Case 3: 1 =nand 2" < p <|q|.
e Case 4: 0<p<1("=0").

» For each case:

e Which p's are in this case.

e What is their value of ;’éﬂ log, (it;f)

k
» Complexity: Works in O (n?) if Sq(k) = Zi:%_lﬂ xlogs(x) and

Sa(k) = 2528’“2—11 xlog,(x) are known for k < /.
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Approximation

k k
> Si(k) = Zi:2k_1+1 xlogy(x) and Sy(k) = Zi:_ll xlog,(x) can be
approximated by using

%(a: logy(z) + (z 4 1) logy(z + 1)) ~ /Hl y log,(y) dy

x

for large x.

» Result for some arbitrary values of d.

n | d ¢ H' b HY ub H/ b H'  k>5|ubH! k>5
8 | OxAE 4 | 8.3039849 | 8.283642 | 8.3146356 8.3039849 8.3039849
16 | OxA45E 7 | 16.270332 | 16.237686 | 16.287598 16.270332 16.270332
24 | 0xA59B4E 12 | 24.273305 | 24.241851 | 24.289814 | 24.273304 24.273305
32 | 0xA54B7C5E | 17 32.241192 | 32.289476 32.272834 32.272834
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Part 4

Lower Bound



Lower Bound of the Final Entropy

» Proof that final entropy is > n for all FCSRs in Galois architecture by using
previous algorithm.

» Induction Base:
An FCSR has a final entropy larger than n if the feedback positions are all

grouped together at the least significant position.

» Induction Step:
If we move a feedback position one position to the left, the final entropy

Increases.
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Part 5

Conclusion



Conclusion

» After one iteration, we loose already //2 bits of entropy.

» We have presented an algorithm which computes the final state entropy of an
Galois FCSR.

» The algorithm works in O(n?) if the values of the sums Z _ok—141 T logy(x)

and Z _ " 2log,(z) are known. Otherwise we need O(2¢) steps to compute
these sums.

» The approximation of the sum works very well for large k.

» The final entropy is larger than n bits.
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