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Part 1

FCSR



Context

I Feedback with Carry Shift Registers (FCSRs):

• Similar to LFSRs but instead of XORs they use additions with carry.
• Introduced by [Goresky Klapper 93], [Marsaglia Zamand 91] and

[Couture L’Ecuyer 94].

I Binary FCSRs in Galois architecture [Goresky Klapper 02].

I Used in the eSTREAM candidate F-FCSR [Arnault et al. 05].

I Entropy of inner state when all values for the initial states are allowed, e.g
first version of F-FSCR-8.
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FCSRs

I The output of an FCSR is the 2-adic expansion of

p

q
≤ 0.

I The output of an FCSR has the maximal period of |q| − 1 if and only if 2 has
order |q| − 1 modulo q.
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FCSR in Galois architecture (1)
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I n: Size of main register.

I 2n > d ≥ 2n−1: Integer which determines the feedback positions.
Carry bit if di = 1.

I (m(t), c(t)): State at time t with

• m(t) =
∑n−1

i=0 mi(t)2i: 2-adic expansion of the main register.

• c(t) =
∑n−1

i=0 ci(t)2i: 2-adic expansion of the carry register,
where ci(t) = 0 for di = 0.

I In our case: q = 1− 2d < 0 and p = m(0) + 2c(0) ≤ |q|.
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FCSR in Galois architecture (2)
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I Update function:

mn−1(t + 1) = m0(t),

di = 1 : mi(t + 1) = (m0(t) + ci(t) + mi+1(t)) mod 2,

ci(t + 1) = (m0(t) + ci(t) + mi+1(t)) ÷2,

di = 0 : mi(t + 1) = mi+1(t).
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Entropy

(6,3)

(0,3)(3,0)(6,1)(2,1)(0,1)

(7,0) (4,3) (1,2) (5,2) (7,2)
(1,0)

(7,3)

(0,0)
(2,3)

(1,1)(0,2)
(2,0)

(5,1)

(3,2)
(5,3)

(6,2)
(1,3)

(6,0)

(2,2)

(4,1)

(4,2)

(4,0)

(5,0)

(3,1)
(7,1)

(3,3)

I We have

• n bits in the main register and
• ` = HammingWeight(d)− 1 carry bits.

I Initial Entropy: n + ` bits.

I Entropy after one iteration: H(1).
I Final Entropy: Hf .
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Part 2

Entropy after one Iteration



Idea

I Initial entropy: n + `.

I Question: Entropy loss after one iteration?

I Method:

• Counting the number of (m(0), c(0))’s which produce the same (m(1), c(1)).
• Using the equations of the update function.
• Only possible if there are positions i such that di = 1 and

mi+1(0) + ci(0) = 1.

I Entropy after one iteration:

H(1) =
∑̀

j=0

2n−j

(
`

j

)
2j

2n+`
log2

(
2n+`

2j

)
= n +

`

2
.
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Part 3

Final Entropy



Final Entropy

I Goal: Entropy when we reached the cycle.

I Proposition [Arnault Berger Minier 08]: Two states (m, c) and (m′, c′)
are equivalent, i.e. m + 2c = m′ + 2c′ = p, if and only if they eventually
converge to the same state after the same number of iterations.

I Idea: How many (m, c)’s create the same p = m + 2c?

I Probability:
v(p)
2n+`

, where v(p) = #{(m, c)|m + 2c = p} for all 0 ≤ p ≤ |q|.

I Final Entropy:

Hf =
|q|∑

p=0

v(p)
2n+`

log2

(
2n+`

v(p)

)
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Algorithm (1)

I Method: Get v(p) by looking at bit per bit addition of m and 2c.

n

000 1

i

01011100100
01000

1

0

+
m
2c

0 0 0 0 0 0 1 0
1 11

p
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Algorithm (2)

I 4 different Cases: i = blog2(p)c.
• Case 1: 1 < i < n and di−1 = 0.
• Case 2: 1 < i < n and di−1 = 1.
• Case 3: i = n and 2n ≤ p ≤ |q|.
• Case 4: 0 ≤ p ≤ 1 (“i = 0”).

I For each case:

• Which p’s are in this case.

• What is their value of v(p)

2n+` log2

(
2n+`

v(p)

)
.

I Complexity: Works in O
(
n2

)
if S1(k) =

∑2k

x=2k−1+1 x log2(x) and

S2(k) =
∑2k−1

x=1 x log2(x) are known for k ≤ `.
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Approximation

I S1(k) =
∑2k

x=2k−1+1 x log2(x) and S2(k) =
∑2k−1

x=1 x log2(x) can be
approximated by using

1
2

(
x log2(x) + (x + 1) log2(x + 1)

)
≈

∫ x+1

x

y log2(y) dy

for large x.

I Result for some arbitrary values of d.

n d ` Hf lb Hf ub Hf lb Hf , k > 5 ub Hf , k > 5
8 0xAE 4 8.3039849 8.283642 8.3146356 8.3039849 8.3039849
16 0xA45E 7 16.270332 16.237686 16.287598 16.270332 16.270332
24 0xA59B4E 12 24.273305 24.241851 24.289814 24.273304 24.273305
32 0xA54B7C5E 17 32.241192 32.289476 32.272834 32.272834
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Part 4

Lower Bound



Lower Bound of the Final Entropy

I Proof that final entropy is ≥ n for all FCSRs in Galois architecture by using
previous algorithm.

I Induction Base:
An FCSR has a final entropy larger than n if the feedback positions are all
grouped together at the least significant position.

m

p

n 0

2c

` 1

I Induction Step:
If we move a feedback position one position to the left, the final entropy
increases.
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Part 5

Conclusion



Conclusion

I After one iteration, we loose already `/2 bits of entropy.

I We have presented an algorithm which computes the final state entropy of an
Galois FCSR.

I The algorithm works in O(n2) if the values of the sums
∑2k

x=2k−1+1 x log2(x)

and
∑2k−1

x=1 x log2(x) are known. Otherwise we need O(2`) steps to compute
these sums.

I The approximation of the sum works very well for large k.

I The final entropy is larger than n bits.
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