SWIFFT: A Modest Proposal

For FFT Hashing
Vadim Lyubashevsky UCSD
Daniele Micciancio UCSD
Chris Peikert SRI International

Alon Rosen Herzliya IDC

A MODEST PROPOSAL

by

‘]unathﬁn Switt

-l-l‘-"*—

FOR PEREY ENDING THE CHELDEKEN Uf PURGH PEOPLE By IKELAND
FROM BEING A BURDEN TO THEIR PARENTS OR COUNTRY, AND
FOR MAKING THEM BEEXEFICIAL TO THE PUBLICK

-r||-'|—.

DueLy, IRELAND

A collection of compression functions

d Efficient
0 Highly parallelizable
0 Supporting proof of security

<

Not an “all-purpose” function
O In particular, it is linear: f(x+y) = f(x) + f(y)
O However, has many desirable properties
a) Cryptographic

} FFT

b) Statistical

Our Starting Point

At a (very) high-level:

0 Key: mrandom deg < n polynomials in &
0 Input: m polynomials w/ binary 0-1 coefficients
O Function: compute sum of products

All arithmetic modulo p and (a” +1)

R:Zp[a]/(a” +1)

O Key:a;a,,...,a €R
Q Input: X, ,X,,....X G{O,l}n C R
O Function: [, (X) = Zzlai ‘X, €R

_

Supporting Proof of Security

For random key A, the function is collision resistant, assuming
worst-case hardness in cyclic/ideal lattices [PR06, LM06].

0 Continues a long line of works [Ajtai96,...,Mic02]
O proofis asymptotic
0 meaningful only for large parameters

In this work:

O Concrete parameters (m=16, n=64, p=257)
O Function maps 1024 bits to 528 bits
0 Very efficient implementation.

O Security proof suggests that design is sound

| O Heuristic analysis suggests that parameters are sound ‘

Towards Efficient Implementation

Central Observations:

1. Polynomial multiplication < FFT
a.-x, = FFT ' (FFT(a,) © FFT(x,))
2. Can pre-compute FFT(a,),FFT(a,),...,FFT(a)

3. No need to compute FFT-
4. Specifics of Z [a]/(a" +1) allow FFT optimization

a) Can perform modular FFT (NTT)
b) FFT of dimension n is sufficient

Resulting function is completely equivalent (security-wise).

Parameters: n,m, p

Key: m x n matrix (al,’j) = Z’ZX”
Input: m X n binary matrix (xl.,) c {(), 1}”””

Input

C N

© 0 o
wE

O] o) =

O] o) -

o 0 o

. . @G\ @“mxn

Parameters: n,m, p

Key: mx n matrix (al.’j) cZ""

Input; 7> binary matrix () {0.1}""

D@---0
Key [T5 % ‘Allarithmetic in 7,
O®
Output
(B8O 14n

Ly

73xn

Step 1: Foreachrow [=1,...,m compute:
(yl.,l,..., yi,n) = FFT(&" - x,,..., 0" " - x,)

where @ € Z is a 2n* root of unity in Z,

FFT

~
=
it
i
g
S
! _,
M\ @ B “_a Z
B 2 = £
o Q o Py
o E I €
-) (@) i S
w o m =
LL
.@ S [
3 o
" I o
« S
—-® 7 2
= ~ e
C®
S .
—\ m “/ .S
—3 5
o) %)
o
- © o w
F) F
w| | 3 QO
Q
)
(/p]

FFT

FFT

FFT

@
,n compute

v
L...

Step 2: For each column j =

SWIFFT (m =16, n = 64, p=257)

nm = 1024 bits
Hard to solve 7;,.., %, snmultaneously

I.’I.I.I.I.I'I.
L AEE AL AT AT ATEREE T i B AL A LA BE
DTE#iEEDTIHDIiEE afaariaﬂmfa Do E’TEEEE'TEI 9159 DT

DD°
nlog, p ~ 528 bits |
Easy to find solution | Y ;>---» Y, ;Jtoeachz; =2 . a4 -y ; individually

d The reason:(y,-,l,---, y,-,,,)are highly constrained

1. Dependency through FFT
2. Need to find binary(x,,..... x, ,
O This way of “breaking linearity” is different from previous
proposals for FFT hashing [S91,592,SV93,V92].

Choice of Parameters (m=16, n=64, p=257)

Security considerations:

0 Subset-sum instance from 1024 to 528 bits.
O n =2 modulus polynomial(o" +1) is irreducible (over Q)

1. crucial for security proof
2. otherwise can find collisions (LASH, [Mic02] OWF).
3. Enables to avoid straightforward weaknesses

Performance considerations:
0 p=257 is a prime of the form p = 4n+1
0 enables efficient 64-dimensional modular FFT.
1. Z,s is afield
2. wel,s isa128t root of unity
3. 0Odd powers of w are the roots of (a" +1)

Fast Implementation

0 DmD El DMEI El El°°°El EI D°°°E| El El°°°El EI D°°°E| El El°°°El El EIMEI El DmD El ElmEl El Dml:l EI D"ol:l El DmEl EI El°°°|] El EIMEI El El°°°|]

o improve performance:

1. Use lookup tables inside FFT.

2. Parallelize atomic operations (+,x).

3. Avoid modular reductions (whenever possible).
4. Multiply by w powers using left shifts.

Speeding up the FFT

Input to FFT is a binary vector:
O Few possible intermediate values.
d Can pre-compute and store in lookup table.

FFT is highly parallelizable:
d Reduce FFTg, to 8 parallel FFT,

O Use SIMD (single-instruction multiple-data)
instructions to perform operations in parallel.

0 Point-wise vector addition/multiplication on 8

dim. registers (w/ 16 bit signed integer entries).

X X X X X X
N - -

II®||
JSh

Further Optimizations

NEW YORK TIMES BESTSELLING AUTHOR OF

Use of Z,:-: DOUGLAS
O w=42is a128th root of unity mod 257.

FFTg uses w'% =22 (mod 257).
Multiplications by powers of w'® using left shifts.
Can avoid most modular reductions w/out overflow.
Use SIMD for parallel modular reduction.

OO0 0O

Multi-core processors:
O FFTs are completely independent.
d We did not exploit multi-core capabilities yet

Performance

Implemented and tested:
0 On 3.2 GHz Intel Pentium 4.
0 Written in C (using INTEL intrinsics for SSE2).
0 Compiled using gcc 4.1.2 on Linux kernel 2.6.19.

Compared to SHA256:

0 Same system
0 openssl version 0.9.8 speed benchmark

Results:
d SWIFFT - Throughput ~40 MB/s
d SHAZ256 - Throughput ~47MB/s

Statistical/Cryptographic Properties

Statistical properties (no computational assumptions):
1. Universal hashing
2. Regularity
3. Randomness extraction

Cryptographic properties:
1. One-wayness
2. Second-preimage resistance §
3. Target collision resistance
4. Collision resistance §

We aim for 219 security. We do NOT claim:
Q 2528 gecurity against inversion attacks

Q 252812 gecurity against collision attacks

Concrete Security Analysis

A convenient way to view SWIFFT is as a subset-sum instance:

a, —a,, - —a || X
a, a —a, || X
a-xXeR © : mod p
_an_l e e a()) _xn—l)

Our function can be viewed as multiplying a vector x < {0,1}"
with a matrix A=[A |---1A] where A, is the skew-circulant

nxmn

matrix that corresponds to a,

0 Best known attack:
. Wagner’s generalized birthday attack.
. Has complexity 2106
O Lattice reduction algorithms do not do as well.

SWIFFT: FFT-based hashing

O Provably secure design (under worst-case assumption)

O Concrete instantiation w/ heuristic security analysis
0 Highly efficient implementation

Future directions

Further cryptanalysis (possibly algebraic)
Faster implementation

Shorter output/smaller description
Exploiting linearity for applications

OO0 O

