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A collection of compression functions

d Efficient
0 Highly parallelizable
0 Supporting proof of security

<

Not an “all-purpose” function
O In particular, it is linear: f(x+y) = f(x) + f(y)
O However, has many desirable properties
a) Cryptographic

} FFT

b) Statistical




Our Starting Point

At a (very) high-level:

0 Key: mrandom deg < n polynomials in &
0 Input: m polynomials w/ binary 0-1 coefficients
O Function: compute sum of products

All arithmetic modulo p and (a” +1)

R:Zp[a]/(a” +1)

O Key:a;a,,...,a €R
Q Input: X, ,X,,....X G{O,l}n C R
O Function: [, (X) = Zzlai ‘X, €R

_




Supporting Proof of Security

For random key A, the function is collision resistant, assuming
worst-case hardness in cyclic/ideal lattices [PR06, LM06].

0 Continues a long line of works [Ajtai96,...,Mic02]
O proofis asymptotic
0 meaningful only for large parameters

In this work:

O Concrete parameters (m=16, n=64, p=257)
O Function maps 1024 bits to 528 bits
0 Very efficient implementation.

O Security proof suggests that design is sound

| O Heuristic analysis suggests that parameters are sound ‘



Towards Efficient Implementation

Central Observations:

1. Polynomial multiplication < FFT
a.-x, = FFT ' (FFT(a,) © FFT(x,))
2. Can pre-compute FFT(a,),FFT(a,),...,FFT(a )

3. No need to compute FFT-
4. Specifics of Z [a]/(a" +1) allow FFT optimization

a) Can perform modular FFT (NTT)
b) FFT of dimension n is sufficient

Resulting function is completely equivalent (security-wise).




Parameters: n,m, p

Key: m x n matrix (al,’j) = Z’ZX”
Input: m X n binary matrix (xl., ) c {(), 1}”””
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Parameters: n,m, p

Key: mx n matrix (al.’j) cZ""

Input; 7> binary matrix ()  {0.1}""
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Key [T5 % ‘Allarithmetic in 7,
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Step 1: Foreachrow [ =1,...,m compute:
(yl.,l,..., yi,n) = FFT(&" - x,,..., 0" " - x, )

where @ € Z  is a 2n* root of unity in Z,




FFT
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Step 2: For each column j =







SWIFFT (m =16, n = 64, p=257)

nm = 1024 bits
Hard to solve 7;,.., %, snmultaneously
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nlog, p ~ 528 bits |
Easy to find solution | Y ;>---» Y, ;Jtoeachz; =2 . a4 -y ; individually

d The reason:(y,-,l,---, y,-,,,)are highly constrained

1. Dependency through FFT
2. Need to find binary(x,,..... x, ,
O This way of “breaking linearity” is different from previous
proposals for FFT hashing [S91,592,SV93,V92].




Choice of Parameters (m=16, n=64, p=257)

Security considerations:

0 Subset-sum instance from 1024 to 528 bits.
O n =2 modulus polynomial(o" +1) is irreducible (over Q)

1. crucial for security proof
2. otherwise can find collisions (LASH, [Mic02] OWF).
3. Enables to avoid straightforward weaknesses

Performance considerations:
0 p=257 is a prime of the form p = 4n+1
0 enables efficient 64-dimensional modular FFT.
1. Z,s is afield
2. wel,s isa128t root of unity
3. 0Odd powers of w are the roots of (a" +1)




Fast Implementation
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o improve performance:

1. Use lookup tables inside FFT.

2. Parallelize atomic operations (+,x).

3. Avoid modular reductions (whenever possible).
4. Multiply by w powers using left shifts.




Speeding up the FFT

Input to FFT is a binary vector:
O Few possible intermediate values.
d Can pre-compute and store in lookup table.

FFT is highly parallelizable:
d Reduce FFTg, to 8 parallel FFT,

O Use SIMD (single-instruction multiple-data)
instructions to perform operations in parallel.

0 Point-wise vector addition/multiplication on 8

dim. registers (w/ 16 bit signed integer entries).

X X X X X X
N - -

II®||
JSh




Further Optimizations

NEW YORK TIMES BESTSELLING AUTHOR OF

Use of Z,:-: DOUGLAS
O w=42is a128th root of unity mod 257.

FFTg uses w'% =22 (mod 257).
Multiplications by powers of w'® using left shifts.
Can avoid most modular reductions w/out overflow.
Use SIMD for parallel modular reduction.

OO0 0O

Multi-core processors:
O FFTs are completely independent.
d  We did not exploit multi-core capabilities yet




Performance

Implemented and tested:
0 On 3.2 GHz Intel Pentium 4.
0 Written in C (using INTEL intrinsics for SSE2).
0 Compiled using gcc 4.1.2 on Linux kernel 2.6.19.

Compared to SHA256:

0 Same system
0 openssl version 0.9.8 speed benchmark

Results:
d SWIFFT - Throughput ~40 MB/s
d SHAZ256 - Throughput ~47MB/s




Statistical/Cryptographic Properties

Statistical properties (no computational assumptions):
1. Universal hashing
2. Regularity
3. Randomness extraction

Cryptographic properties:
1. One-wayness
2. Second-preimage resistance §
3. Target collision resistance
4. Collision resistance §

We aim for 219 security. We do NOT claim:
Q 2528 gecurity against inversion attacks

Q 252812 gecurity against collision attacks




Concrete Security Analysis

A convenient way to view SWIFFT is as a subset-sum instance:

a, —a,, - —a || X
a, a —a, || X
a-xXeR © : mod p
_an_l e e a() ) _xn—l )

Our function can be viewed as multiplying a vector x < {0,1}"
with a matrix A=[A |---1A ] where A, is the skew-circulant

nxmn

matrix that corresponds to a,

0 Best known attack:
. Wagner’s generalized birthday attack.
. Has complexity 2106
O Lattice reduction algorithms do not do as well.




SWIFFT: FFT-based hashing

O Provably secure design (under worst-case assumption)

O Concrete instantiation w/ heuristic security analysis
0 Highly efficient implementation

Future directions

Further cryptanalysis (possibly algebraic)
Faster implementation

Shorter output/smaller description
Exploiting linearity for applications
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