SWIFFT: A Modest Proposal For FFT Hashing

Vadim Lyubashevsky
Daniele Micciancio
Chris Peikert
Alon Rosen

UCSD UCSD SRI International Herzliya IDC

SWIFFT

A collection of compression functions

- □ Efficient
- Highly parallelizable
- □ Supporting proof of security

Not an "all-purpose" function

- In particular, it is linear: f(x+y) = f(x) + f(y)
- However, has many desirable properties
 - a) Cryptographic
 - b) Statistical

Our Starting Point

At a (very) high-level:

- \square Key: m random deg < n polynomials in α
- ☐ Input: m polynomials w/ binary 0-1 coefficients
- ☐ Function: compute sum of products

All arithmetic modulo p and $(\alpha^n + 1)$

$$R = \mathbb{Z}_p[\alpha] / (\alpha^n + 1)$$

- \square Key: $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m \in R$
- $\Box \quad \underline{\text{Function}} : f_{\mathbf{A}}(\mathbf{X}) = \sum_{i=1}^{m} \mathbf{a}_{i} \cdot \mathbf{x}_{i} \in R$

Supporting Proof of Security

For random key A, the function is collision resistant, assuming worst-case hardness in cyclic/ideal lattices [PR06, LM06].

- ☐ Continues a long line of works [Ajtai96,...,Mic02]
- proof is asymptotic
- ☐ meaningful only for large parameters

In this work:

- ☐ Concrete parameters (m=16, n=64, p=257)
- ☐ Function maps 1024 bits to 528 bits
- Very efficient implementation.
- Security proof suggests that design is sound
- Heuristic analysis suggests that parameters are sound

Towards Efficient Implementation

Central Observations:

1. Polynomial multiplication ⇔ FFT

$$\mathbf{a}_i \cdot \mathbf{x}_i = \text{FFT}^{-1}(\text{FFT}(\mathbf{a}_i) \odot \text{FFT}(\mathbf{x}_i))$$

- 2. Can pre-compute $FFT(\mathbf{a}_1), FFT(\mathbf{a}_2), \dots, FFT(\mathbf{a}_m)$
- 3. No need to compute FFT-1
- 4. Specifics of $\mathbb{Z}_p[\alpha]/(\alpha^n+1)$ allow FFT optimization
 - a) Can perform *modular* FFT (NTT)
 - b) FFT of dimension n is sufficient

Resulting function is completely equivalent (security-wise).

SWIFFT

Parameters: n, m, p

<u>Key:</u> $m \times n$ matrix $(a_{i,j}) \in \mathbb{Z}_p^{m \times n}$

Input: $m \times n$ binary matrix $(x_{i,j}) \in \{0,1\}^{m \times n}$

SWIFFT

Parameters: n,m, p

<u>Key:</u> $m \times n$ matrix $(a_{i,j}) \in \mathbb{Z}_p^{m \times n}$

Input: $m \times n$ binary matrix $(x_{i,j}) \in \{0,1\}^{m \times n}$

Step 1: For each row i = 1, ..., m compute:

$$(y_{i,1},\ldots,y_{i,n}) = FFT(\omega^0 \cdot x_{i,1},\ldots,\omega^{n-1} \cdot x_{i,n})$$

where $\omega \in \mathbb{Z}_p$ is a 2nth root of unity in \mathbb{Z}_p

Step 1: For each row i = 1, ..., m compute:

$$(y_{i,1}, \dots, y_{i,n}) = FFT(\omega^0 \cdot x_{i,1}, \dots, \omega^{n-1} \cdot x_{i,n})$$

where $\omega \in \mathbb{Z}_p$ is a 2nth root of unity in \mathbb{Z}_p

Step 2: For each column j = 1, ..., n compute:

$$z_j = a_{1,j} \cdot y_{1,j} + \dots + a_{m,j} \cdot y_{m,j}$$

SWIFFT (m = 16, n = 64, p = 257)

nm = 1024 bits Hard to solve z_1, \dots, z_n simultaneously

 $n \log_2 p \sim 528 \text{ bits}$

Easy to find solution $(y_{1,j},...,y_{m,j})$ to each $z_j = \sum_{i=1}^m a_{i,j} \cdot y_{i,j}$ individually

- The reason: $(y_{i,1},...,y_{i,n})$ are highly constrained
 - 1. Dependency through FFT
 - 2. Need to find binary $(x_{i,1}, \dots, x_{i,n})$
- ☐ This way of "breaking linearity" is different from previous proposals for FFT hashing [S91,S92,SV93,V92].

Choice of Parameters (m=16, n=64, p=257)

Security considerations:

- ☐ Subset-sum instance from 1024 to 528 bits.
- \square n = $2^k \Leftrightarrow modulus polynomial <math>(\alpha^n + 1)$ is irreducible (over \mathbb{Q})
 - 1. crucial for security proof
 - 2. otherwise can find collisions (LASH, [Mic02] OWF).
 - 3. Enables to avoid straightforward weaknesses

Performance considerations:

- \Box p=257 is a prime of the form p = 4n+1
- enables efficient 64-dimensional modular FFT.
 - 1. \mathbb{Z}_{257} is a field
 - 2. $\omega \in \mathbb{Z}_{257}$ is a 128th root of unity
 - 3. Odd powers of w are the roots of $(\alpha^n + 1)$

Fast Implementation

To improve performance:

- 1. Use lookup tables inside FFT.
- 2. Parallelize atomic operations (+,x).
- 3. Avoid modular reductions (whenever possible).
- 4. Multiply by w powers using left shifts.

Speeding up the FFT

Input to FFT is a binary vector:

- **☐** Few possible intermediate values.
- Can pre-compute and store in lookup table.

FFT is highly parallelizable:

- □ Reduce FFT₆₄ to 8 parallel FFT₈
- ☐ Use SIMD (single-instruction multiple-data) instructions to perform operations in parallel.
- ☐ Point-wise vector addition/multiplication on 8 dim. registers (w/ 16 bit signed integer entries).

Further Optimizations

Use of \mathbb{Z}_{257} :

- \square ω = 42 is a 128th root of unity mod 257.
- \Box FFT₈ uses ω¹⁶ = 2² (mod 257).
- \square Multiplications by powers of ω^{16} using left shifts.
- ☐ Can avoid most modular reductions w/out overflow.
- ☐ Use SIMD for parallel modular reduction.

Multi-core processors:

- ☐ FFTs are completely independent.
- We did not exploit multi-core capabilities yet

Performance

Implemented and tested: On 3.2 GHz Intel Pentium 4. Written in C (using INTEL intrinsics for SSE2). Compiled using gcc 4.1.2 on Linux kernel 2.6.19. **Compared to SHA256:** Same system openssl version 0.9.8 speed benchmark **Results: SWIFFT - Throughput ~40 MB/s** SHA256 - Throughput ~47MB/s

Statistical/Cryptographic Properties

Statistical properties (no computational assumptions):

- 1. Universal hashing
- 2. Regularity
- 3. Randomness extraction

Cryptographic properties:

- 1. One-wayness
- 2. Second-preimage resistance
- 3. Target collision resistance
- 4. Collision resistance

We aim for 2¹⁰⁰ security. We do NOT claim:

- ☐ 2⁵²⁸ security against inversion attacks
- □ 2^{528/2} security against collision attacks

Concrete Security Analysis

A convenient way to view SWIFFT is as a subset-sum instance:

$$\mathbf{a} \cdot \mathbf{x} \in R \quad \leftrightarrow \quad \begin{bmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & & -a_2 \\ \vdots & & \ddots & \\ a_{n-1} & & \cdots & a_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix} \mod p$$

Our function can be viewed as multiplying a vector $\mathbf{x} \in \{0,1\}^{mn}$ with a matrix $\mathbf{A} = \left[\mathbf{A}_1 \mid \cdots \mid \mathbf{A}_m\right]_{n \times mn}$ where \mathbf{A}_i is the skew-circulant matrix that corresponds to \mathbf{a}_i

- Best known attack:
 - Wagner's generalized birthday attack.
 - Has complexity 2¹⁰⁶
- ☐ Lattice reduction algorithms do not do as well.

Conclusions

SWIFFT: FFT-based hashing

- Provably secure design (under worst-case assumption)
- □ Concrete instantiation w/ heuristic security analysis
- Highly efficient implementation

Future directions

- ☐ Further cryptanalysis (possibly algebraic)
- □ Faster implementation
- Shorter output/smaller description
- Exploiting linearity for applications