
How to Encrypt with a Malicious Random
Number Generator

Seny Kamara1! and Jonathan Katz2!!

1 Johns Hopkins University
seny@cs.jhu.edu

2 University of Maryland
jkatz@cs.umd.edu

Abstract. Chosen-plaintext attacks on private-key encryption schemes
are currently modeled by giving an adversary access to an oracle that
encrypts a given message m using random coins that are generated uni-
formly at random and independently of anything else. This leaves open
the possibility of attacks in case the random coins are poorly generated
(e.g., using a faulty random number generator), or are under partial ad-
versarial control (e.g., when encryption is done by lightweight devices
that may be captured and tampered with).

We introduce new notions of security modeling such attacks, propose two
concrete schemes meeting our definitions, and show generic transforma-
tions for achieving security in this context.

Key words: Private-key encryption, random number generation

1 Introduction

Security against chosen-plaintext attacks (CPA-security) [10, 2, 12] is, nowadays,
considered a minimal notion of security that any private-key encryption scheme
deployed in practice should satisfy. (We defer for now any discussion of security
against chosen-ciphertext attacks, though we will consider such attacks later.)
Very roughly speaking, CPA-security means that given a challenge ciphertext
generated using an unknown key K, a computationally-bounded adversary can-
not recover any partial information about the underlying plaintext even if it is
given access to an encryption oracle that returns an encryption (using the same
key K) of any message m provided by the adversary. This “encryption oracle” is
meant, in part, to model potential real-world actions of an adversary that might
influence the honest sender (holding the key K) to encrypt certain messages that
are (partially or entirely) under the adversary’s control.

It is not hard to see that any scheme secure with respect to chosen-plaintext
attacks must be probabilistic. Furthermore, it is by now well-understood how
to construct CPA-secure schemes under the assumption that the sender is able
! Supported in part by the Phillips and Camille Bradford Fellowship.

!! Research supported in part by the U.S. Army Research Laboratory.

to generate a fresh set of uniformly random coins each time a message is en-
crypted. In practice, such coins might be generated by using a combination of
randomness extractors and pseudorandom number generators (PRNGs) to distill
pseudorandom coins from a high-entropy source available to the sender.

The above, however, neglects the possibility that the random coins used to
encrypt may sometimes be “less than perfect”. For example, the sender may
be using a faulty PRNG that produces biased or partially predictable outputs.
Or, the random source used to seed the PRNG may have less entropy than
originally thought. More malicious scenarios include the possibilities that an
adversary may have tampered with the PRNG used by the sender, or may be
able to effect some control over the random source used to seed the PRNG.
In the most extreme case, the adversary may have physical access to the device
performing the encryption (as might be the case if, e.g., encryption is carried out
on a lightweight device captured by the adversary), and may then have complete
control over the “random coins” that will actually be used to encrypt. We refer
to such attacks as chosen-randomness attacks.

In this work, we introduce new definitions of security that offer protection
against the attacks just described. Our definitions assume the worst possible
case: that the randomness used by the encryption oracle is under the complete
control of the adversary. In fact, the only random coins that are not under the
adversary’s control (other than those used to generate the key) are those that
are used to encrypt the challenge ciphertext; we assume those coins are truly
random.1 Our definition, then, can be viewed (informally) as offering semantic
security for any messages that are encrypted using “good” random coins, even
if the adversary is able to “probe” the system repeatedly and thereby cause the
sender to use “poor” random coins when encrypting other messages.

Summary of our contributions. We formally define security against chosen-
randomness attacks (CRA-security), both with and without the additional pres-
ence of a decryption oracle. We then show two secure constructions that can be
based on any block cipher. The first is a relatively simple fixed-length construc-
tion, while the second is a scheme that can encrypt arbitrary-length messages.
We also show a generic transformation converting any CPA-secure scheme into a
CRA-secure scheme. Finally, we propose a simple way to extend any CRA-secure
scheme so as to also achieve security against chosen-ciphertext attacks.

1.1 Related Work

The most relevant prior work is perhaps Rogaway’s notion of nonce-based private-
key encryption [15], which treats the encryption algorithm as a deterministic
1 It is not hard to see that some assumption regarding those coins is necessary in

our setting (if the adversary has complete control over all coins, then the scheme
degenerates to a deterministic one that cannot be secure); our assumption that
the coins used to generate the challenge ciphertext are truly random is made for
simplicity, and can be relaxed by using randomness extractors and assuming only
access to a high-entropy source when encrypting the challenge ciphertext.

function of the message and a user-provided nonce. (With respect to this view-
point, it is the responsibility of the user — not the encryption algorithm — to
ensure, e.g., that nonces are chosen at random.) In this context, Rogaway defines
a notion of security that, roughly speaking, guarantees semantic security as long
as nonces never repeat. While this definition is somewhat similar to our own, we
show in Section 3.1 that the notion considered by Rogaway is incomparable to
the notion of CRA-security considered here; i.e., there are schemes satisfying his
definition and not ours, and vice versa. We remark further that the motivations
for our work and Rogaway’s work are very different: as argued by Rogaway [15],
nonce-based security is best understood as a usability requirement, whereas we
are interested in examining a stronger attack model (within the conventional
framework for encryption).

Adversarial manipulation of a PRNG was mentioned as motivation for our
work. While there has been prior work developing “forward-” and “backward-
secure” pseudorandom number generators [4, 1, 8], simply composing such gen-
erators with a standard CPA- or CCA-secure encryption scheme does not defend
against the attacks considered here. The reason is that these prior works con-
sider only adversaries that learn the internal state of the PRNG, whereas our
notions consider stronger adversaries that may control the state of the PRNG.
One can therefore view our notion of CRA-security as achieving a strong variant
of backward- and forward-security with respect to the underlying source of ran-
domness. In other words, our definitions guarantee that a plaintext encrypted
using high-quality randomness is protected even against adversaries that can
control the source after the present plaintext is encrypted (i.e., strong forward-
security), or that have controlled it in the past (i.e., strong backward-security).

Work of McInnes and Pinkas [13] and Dodis et al. [7, 5] has also considered
the security of encryption when truly random coins are not available to the
sender. Although these works are superficially related to our own, the problems
being considered — as well as the motivation — are very different. The work of
[13, 7, 5] is unwilling to assume any truly random coins, even during generation
of the secret key, and is interested in exploring what can be achieved in such an
extreme setting. For this reason, they are primarily concerned with information-
theoretic security (although later work [6, 5] treats computational security) and
do not consider security against chosen-plaintext attacks at all. In this work, in
contrast, we are willing to assume that truly random coins exist (e.g., during
key generation and, at least once, when encrypting), but are concerned that the
adversary may periodically be able to tamper with the honest user’s ability to
generate true random coins. We are then interested in the question of whether
the analogue of CPA-security is achievable.

2 Notation and Preliminaries

We use standard cryptographic notation and terminology. We use 〈a, b〉 or a‖b
interchangeably for the concatenation of strings a and b. We let Func[n, m] denote
the set of all functions from {0, 1}n to {0, 1}m, and let Perm[n, n] denote the set

of all permutations over {0, 1}n. A function f : N → N is negligible in k, if for
every polynomial p and sufficiently large k, f(k) < 1/p(k). We write negl(k) and
poly(k) to refer to unspecified negligible and polynomial functions in k.

If O is a probabilistic algorithm, then O(x) denotes an execution of O on
input x with uniformly chosen random coins, and O(x; r) denotes an execution
of O on input x with random coins r. Given a probabilistic algorithm O, we
will consider adversaries A given access to an oracle that on input 〈x, r〉 re-
turns O(x; r) (this is different from the usual case where A is given access to an
oracle that on input x returns O(x; r) for uniformly chosen random coins r).

2.1 Cryptographic Tools

We use standard cryptographic tools which are reviewed here to fix notation.

Pseudo-random functions. Let F be an efficiently-computable keyed func-
tion, where for a fixed key K of length k we have FK : {0, 1}"in(k) → {0, 1}"out(k)

with !in, !out polynomial in k. We say F is a pseudorandom function (PRF) if,
informally, the function FK (for a random key K ∈ {0, 1}k) is indistinguishable
from a function f chosen uniformly at random from Func[!in(k), !out(k)]. If F is
a PRF and FK is an efficiently-invertible permutation for each choice of K, then
we call F a pseudorandom permutation (PRP). We refer to [11] for the formal
definitions, which are standard.

Encryption. A private-key encryption scheme SKE = (Gen,Enc,Dec) consists
of three polynomial-time algorithms with the following functionality:

– Gen takes as input a security parameter 1k and returns a key K.
– Enc is a probabilistic algorithm that takes as input the key K and a message

m from some associated message space. It returns a ciphertext c, and we
denote this by c ← EncK(m).

– Dec takes as input the key K and a ciphertext c; it returns either a message
m in the message space or a special failure symbol ⊥. We write this as m :=
DecK(c), and assume without loss of generality that Dec is deterministic.

We assume perfect correctness: for all k ∈ N, all K output by Gen(1k), and all
messages m in the message space, DecK(EncK(m)) = m.

In most schemes, Gen(1k) simply outputs a random key of length k; when
this is the case, we write SKE = (Enc,Dec).

We use the standard notions of security against chosen-plaintext attacks
(CPA-security) and security against (adaptive) chosen-ciphertext attacks (CCA-
security); see, e.g., [11].

Message authentication codes (MACs). A message authentication code
MAC = (Mac,Vrfy) is a pair of polynomial-time algorithms. Mac takes as input
a key K ∈ {0, 1}k and a message m ∈ {0, 1}∗ and outputs a tag t; we assume2

that Mac is deterministic and denote this by t := MacK(m). The determin-
istic verification algorithm Vrfy takes as input a key K ∈ {0, 1}k, a message
2 This is without loss of generality, and anyway holds for many common constructions.

m ∈ {0, 1}∗, and a tag t; it outputs a bit b := VrfyK(m, t) where a ‘1’ indi-
cates acceptance and a ‘0’ indicates rejection. We assume that for all k ∈ N, all
K ∈ {0, 1}k, and all m ∈ {0, 1}∗ it holds that VrfyK(m,MacK(m)) = 1.

Note that we assume trivial key generation, where on security parameter 1k

the key is chosen uniformly from {0, 1}k. We also assume MACs for arbitrary-
length messages. (Neither assumption is essential, but making these assumptions
simplifies the presentation.)

We use the standard definition of existential unforgeability under an adaptive
chosen message attack; see [11]. A MAC has unique tags if for all k ∈ N, all
K ∈ {0, 1}k, and all m ∈ {0, 1}∗, there is a unique t such that VrfyK(m, t) = 1.

3 Definitions

We now present our definitions of CRA and CCRA-security. Intuitively, CRA-
security guarantees that, given a ciphertext, no polynomially-bounded adversary
can recover any partial information about the plaintext even if it has access to
an encryption oracle and complete control over its source of randomness.

Definition 1 (CRA-security). Let SKE = (Gen,Enc,Dec) be a private-key
encryption scheme. SKE is CRA-secure if the advantage of any polynomial-time
adversary A in the following experiment is negligible (in k):

1. First, a key K ← Gen(1k) is generated.
2. A is allowed to interact with an oracle EncK(· ; ·). We stress that, here, A

submits pairs 〈m, r〉 and, in return, is given EncK(m; r). (Since A can choose
r uniformly at random, this is at least as strong as a chosen-plaintext attack.)

3. A outputs two equal-length messages m0, m1. A bit b is chosen at random,
and a “challenge ciphertext” c ← EncK(mb) is computed and given to A.
We stress that encryption here uses uniform coins that are not known to A.

4. A may continue to interact with its oracle as before. Eventually, it outputs
a bit b′; the experiment evaluates to 1 if b′ = b.

We denote the above experiment by CRAA,SKE(k), and define the advantage of A
in the experiment as

∣∣Pr[CRAA,SKE(k) = 1]− 1
2

∣∣.

The stronger notion of CCRA-security guarantees that, given a ciphertext,
no polynomially-bounded adversary can recover any partial information about
the plaintext, even if it has access to both an encryption and a decryption oracle
and complete control over the encryption oracle’s source of randomness. This
is defined in the natural way, and we denote the experiment in this case by
CCRAA,SKE(k). We remark that since Dec is deterministic, there is no analogue of
the adversary’s being able to “control the randomness” used during decryption.

3.1 Comparison to Previous Definitions

In this section we compare our new definitions to previous security notions for
private-key encryption, including CPA- and CCA-security, and the more closely
related notions of nonce-based CPA and CCA-security from [15].

Theorem 1. CRA-security is strictly stronger than CPA-security.

Proof. It is easy to see that CRA-security implies CPA-security. We show that
the converse is not true. Let F be a pseudorandom function, and consider the
standard CPA-secure private-key encryption scheme with encryption given by
EncK(m; r) = 〈r, FK(r)⊕m〉. We claim that this scheme is not CRA-secure. To
see this, note that an adversary given a challenge ciphertext 〈r, c〉 can submit
〈0k, r〉 to its oracle and will receive in return the ciphertext

EncK(0k; r) = 〈r, FK(r)〉.

It is then trivial for the adversary to determine the message that was encrypted.

Theorem 2. CCRA-security is strictly stronger than CCA-security.

A proof is very similar to the proof of the previous theorem, and is omitted.
Nonce-based encryption [15] is a formalization of private-key encryption

where the encryption algorithm is a deterministic function of a message and
a nonce, and the user (or, more generally, the program calling the encryption al-
gorithm as a sub-routine) is responsible for providing the nonce. E.g., in the case
of CBC-mode encryption the IV would be an additional input provided to the
encryption algorithm as opposed to being generated “internally”. This formula-
tion gives more flexibility with respect to how the nonce is chosen: by assuming
the nonce is chosen uniformly each time the encryption algorithm is called, the
standard notion of probabilistic encryption is recovered, but another option is
to assume only that nonces never repeat (but are not necessarily random).

Rogaway [15] considers definitions of security for nonce-based schemes in
which the adversary is given some control over the nonce that is used to encrypt
at all times, i.e., both when interacting with an encryption oracle as well as when
the challenge ciphertext is computed. (A definition of nonce-based CPA-security
is given in Appendix A.) Intuitively, these definitions are incomparable to our
own because:

– On one hand, we assume the adversary has no control over the random-
ness used to encrypt the challenge ciphertext, whereas Rogaway allows the
adversary to have some control over the randomness even in this case.

– On the other hand, we give the adversary full control over the randomness
used by the encryption oracle, whereas Rogaway restricts the adversary to
never using the same nonce twice.

We formally prove that the notions are incomparable now.

Theorem 3. Nonce-based CPA-security and CRA-security are incomparable.

The theorem is a consequence of the following two lemmas. In proving them,
we rely on the definition of nonce-based security given in Appendix A; the def-
inition is weaker than that given in [15], but the difference is inessential and
unimportant for the present discussion.

Lemma 1. Assuming the existence of one-way functions, there is a private-key
encryption scheme that is nonce-based CPA-secure but that is not CRA-secure.

Proof. We take the standard encryption scheme used in the proof of Theorem 1.
Recall, F is a pseudorandom function, which may be constructed from any one-
way function. Encryption is given by EncK(m; r) = 〈r, FK(r) ⊕ m〉, where we
treat r as a nonce, and decryption is given by DecK(〈r, c〉) = FK(r)⊕ c.

We have already shown in the proof of Theorem 1 that this scheme is not
CRA-secure. On the other hand, it is not hard to see that it is nonce-based CPA-
secure: since the adversary is not allowed to use the same nonce twice, it holds
in particular that the nonce r used when encrypting the challenge ciphertext is
distinct from any nonce used in answering any queries to the encryption oracle.
It then follows easily from the pseudorandomness of F that the scheme is nonce-
based CPA-secure.

Lemma 2. Assuming the existence of a private-key encryption scheme that is
CRA-secure, there is a CRA-secure scheme that is not nonce-based CPA-secure.

Proof. Let SKE = (Enc,Dec) be a CRA-secure private-key encryption scheme.
Assume without loss of generality that, on security parameter k, the encryption
algorithm uses k bits of randomness. (We will again treat the random coins used
by Enc as a nonce.) Define a modified encryption scheme SKE′ = (Enc′,Dec)
(decryption remains unchanged) as follows:

Enc′K(m; r‖b) = EncK(m; r),

where b is a bit and r ∈ {0, 1}k. It is easy to see that SKE′ is not nonce-based
CPA secure: an adversary can simply request to have the challenge ciphertext en-
crypted using the nonce r‖0 and then query its encryption oracle using the (dis-
tinct) nonce r‖1. (Further details omitted.) It is similarly easy to see that SKE′

remains CRA-secure: oracle queries with respect to the modified scheme SKE′ are
no more powerful than oracle queries with respect to the original scheme SKE;
when the challenge ciphertext is encrypted, it will be encrypted using algorithm
Enc with uniform random coins.

In the sections that follow, we will show constructions of CRA-secure encryp-
tion schemes that may be based on any one-way function.

Using ideas as above, we can similarly show that the notions of CCRA-
security and nonce-based CCA-security are incomparable.

4 Achieving CRA-Security

In this section we propose two CRA-secure private-key encryption schemes based
on PRPs; our first construction handles fixed-length messages only, while our
second construction handles messages of variable length. We then show a general
transformation from any CPA-secure scheme to a CRA-secure one.

4.1 A Fixed-Length CRA-Secure Construction

Our first construction is a modification of the standard CPA-secure encryption
scheme that we have seen before in the proof of Theorem 1. Let P be a pseu-
dorandom permutation on k-bit strings, and let F be a pseudorandom function
mapping k-bit inputs to k-bit outputs. Our scheme is defined as follows:

Gen(1k): Choose K1, K2 ← {0, 1}k and output K = 〈K1, K2〉.

EncK(m; r): Compute c2 = FK2(r)⊕m, then output the ciphertext 〈PK1(r), c2〉.

DecK(〈c1, c2〉): Compute r = P−1
K1

(c1). Then output m := FK2(r) ⊕ c2 as the
message.

Theorem 4. If P is a pseudorandom permutation and F is a pseudorandom
function, then the scheme described above is CRA-secure.

Proof. Consider the (imaginary) scheme S̃KE = (G̃en, Ẽnc, D̃ec) in which G̃en

samples p ← Perm[k, k] and f ← Func[k, k] uniformly at random, and Ẽnc(m; r)
outputs the ciphertext 〈p(r), f(r)⊕m〉. We analyze the security of this scheme
in an information-theoretic sense; CRA-security of the scheme described above
(for polynomial-time adversaries) then follows easily.

Let A be an adversary making at most q(k) queries to its oracle in experiment
CRAA, gSKE(k). Let r be the randomness used to generate the challenge ciphertext
in this experiment, and let query be the event that one of A’s oracle queries uses
randomness r. Then:

Pr
[
CRAA, gSKE(k) = 1

]
= Pr [b′ = b]

= Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that
∣∣∣Pr

[
CRAA, gSKE(k) = 1

]
− Pr [b′ = b | query]

∣∣∣ ≤ Pr [query].

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ q(k)/2k.

This follows from the fact that, after observing the challenge ciphertext and
making q′ queries to its oracle that do not use randomness r, all A knows is that
r is not equal to any of the random coins used in its queries thus far.

Claim. Pr[b′ = b | query] = 1/2.

Let m0, m1 denote the messages output by A, and let 〈c1, c2〉 be the challenge
ciphertext. If query does not occur, then f(r) is equally likely to be c2 ⊕m0 or
c2 ⊕m1 (just as in the one-time pad), and thus A can do no better than guess.

4.2 A CRA-Secure Construction for Variable-Length Messages

Our second construction applies a similar modification as in the previous section,
but to CTR-mode encryption. Let P be a pseudorandom permutation and F a
pseudorandom function, as in the previous section.

Gen(1k): Choose K1, K2 ← {0, 1}k and output K = 〈K1, K2〉.
EncK(m; r): Parse m into ! blocks m = 〈m1, . . . ,m"〉, each of length k. For
1 ≤ i ≤ !, compute ci = FK2(r+i)⊕mi. (Here, we are viewing r as a k-bit integer
and addition is done modulo 2k). Output the ciphertext c = 〈PK1(r), c1, . . . , c"〉.
DecK(〈c0, c1, . . . , c"〉): Compute r = P−1

K1
(c0). For 1 ≤ i ≤ !, compute mi =

FK2(r + i)⊕ ci. Output m = 〈m1, . . . ,m"〉.
Theorem 5. If P is a pseudorandom permutation and F is a pseudorandom
function then the scheme described above is CRA-secure.

Proof. Consider the private-key encryption scheme (G̃en, Ẽnc, D̃ec) such that G̃en

samples p ← Func[k, k] and f ← Func[k, k] uniformly at random, and then Ẽnc is
define in the natural way based on the scheme described above. We analyze the
security of this scheme in an information-theoretic sense; security of the scheme
described above (for polynomial-time adversaries) then follows easily.

Let A be an adversary making at most q = q(k) queries to its oracle in
experiment CRAA, gSKE(k), where the messages in these queries have block-length
at most ! = q(k). We also let q(k) be a bound on the block-length of the messages
m0, m1 output by A. Let r be the randomness used to generate the challenge
ciphertext in this experiment, and let query be the event that one of A’s oracle
queries uses randomness r′ ∈ {r − q + 1, . . . , r + q − 1}. Then:

Pr
[
CRAA, gSKE(k) = 1

]
= Pr [b′ = b]

= Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that∣∣∣Pr
[
CRAA, gSKE(k) = 1

]
− Pr [b′ = b | query]

∣∣∣ ≤ Pr [query].

The following two claims complete the proof of the theorem.
Claim. Pr [query] ≤ O(q(k)2/2k).
Intuitively, the value r used to encrypt the challenge ciphertext is “hidden”
from A. Thus, assuming query has not yet occurred, a query made by A to its
encryption oracle can cause query to occur with probability at most

(r + q − 1)− (r − q + 1) + 1
2k

=
2q − 1

2k
.

Applying a union bound to the q queries of A gives the stated result.

Claim. Pr[b′ = b | query] = 1/2.

This follows by analogy to the one-time pad; conditioned on query not occurring,
FK2(r + 1), . . . , FK2(r + q) are uniformly distributed from A’s point of view.

4.3 A CPA-to-CRA Transformation

Finally, we present a transformation that turns any CPA-secure private-key en-
cryption scheme into a CRA-secure scheme. The transformation assumes the
existence of pseudorandom functions for arbitrary-length inputs; these may be
constructed based on any one-way function, whose existence is implied by the
existence of a CPA-secure encryption scheme.

Let SKE′ = (Gen′,Enc′,Dec′) be a CPA-secure encryption scheme in which
encryption uses k random coins (this is not essential, but makes the analysis
easier), and let F be a pseudorandom function. Define SKE as follows:

Gen(1k): Compute K1 ← Gen′(1k), and then choose K2 ← {0, 1}k. Output the
key K = 〈K1, K2〉.

EncK(m; r), where r ∈ {0, 1}k: Compute “random coins” r′ = FK2(m‖r). Then
output the ciphertext c′ = Enc′K1

(m; r′).

DecK(c′): Output m = Dec′K1
(c′).

Theorem 6. If SKE′ is a CPA-secure private-key encryption scheme and F is
a pseudorandom function, then the scheme described above is CRA-secure.

Proof. Given an adversary A attacking the constructed scheme (in the sense of
CRA-security), we construct an adversary A′ attacking SKE′ (in the sense of
CPA-security). Our adversary A′ is defined as follows:

1. Run A. When A makes oracle query 〈m, r〉 to its oracle, A′ queries m to its
own (standard) encryption oracle and returns the result to A. We assume
without loss of generality that A never makes the same oracle query twice.

2. When A outputs two messages m0, m1, these same messages are output
by A′. The challenge ciphertext given to A′ is forwarded to A.

3. Oracle queries of A are handled exactly as before.
4. When A outputs a bit b′, the same bit is output by A′.

It is not hard to see that the view of A in the above is computationally indis-
tinguishable from its view when attacking the constructed scheme. Thus, the
advantage of A′ is negligibly close to the advantage of A. Since SKE′ is CPA-
secure by assumption, we conclude that the advantage of A in attacking the
constructed scheme (in the sense of CRA-security) is negligible.

5 Achieving CCRA-Security

We now show that the standard “encrypt-then-MAC” transformation [3] from
CPA-secure schemes to CCA-secure ones works in our setting also. Let (Mac,Vrfy)
be a secure message authentication code, and let SKE′ = (Gen′,Enc′,Dec′) be a
CRA-secure encryption scheme. Define SKE as follows:

Gen(1k): Compute K1 ← Gen′(1k), and then choose K2 ← {0, 1}k. Output the
key K = 〈K1, K2〉.

EncK(m; r): Compute c′ = Enc′K1
(m; r) and t = MacK2(c′). Output the cipher-

text 〈c′, t〉.

DecK(〈c′, t〉): If VrfyK2
(c′, t) = 1 then output Dec′K1

(c′). Otherwise output ⊥.

Theorem 7. If SKE′ is CRA-secure and (Mac,Vrfy) is a secure MAC with
unique tags, then the scheme described above is CCRA-secure.

Proof. Let A be an adversary attacking SKE in the sense of CCRA-security. Let
query be the event that A submits a decryption query 〈c, t〉 to its decryption ora-
cle such that DecK(c, t) ,=⊥ and 〈c, t〉 was not the result of a previous encryption
query. Clearly,

Pr [b′ = b] = Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that

|Pr [b′ = b]− Pr[b′ = b | query]| ≤ Pr [query].

The following claims complete the proof.

Claim. For all ppt adversaries A it holds that Pr [query] is negligible.

We show that if there exists a ppt adversary A such that Pr [query] is not
negligible, then there exists a ppt adversary B that can win the existential
unforgeability experiment against MAC with non-negligible probability.

Consider the adversary B that, given 1k and oracle access to MacK(·) and
VrfyK(·), begins by generating an encryption key K1 ← Gen′(1k) and runs A(1k)
as follows,

Given an encryption query e = 〈m, r〉, adversary B computes c ← Enc′K1
(m; r)

and queries its own Mac oracle with c, receiving t. Finally, it returns the ci-
phertext 〈c, t〉 to A.

Given a decryption query d = 〈c, t〉, adversary B queries its Vrfy oracle with c
and t. If the oracle returns 1 then it computes and returns m ← Dec′K1

(c) to
A; otherwise it returns ⊥. Adversary B stores all of A’s decryption queries.
After polynomially-many queries, A outputs m0, m1.

B samples b ← {0, 1}, computes c∗ ← Enc′K1
(mb), and queries its oracle to

receive t∗ ← Mac(K, c∗). It then runs A with the challenge ciphertext 〈c∗, t∗〉,
and answers its queries as before. After polynomially many queries, A outputs
a bit b′ and halts. Let q(k) be the number of decryption queries made by A. If
query has occurred by the end of the game (note that B can determine if this
happens), then B outputs the appropriate query for which this first occurred.

Notice that B succeeds if query occurs. Since A’s view is identical to its view
when attacking SKE, the claim follows.

Claim. For all ppt adversaries A, it holds that Pr[b′ = b | query] ≤ 1/2+negl(k).

We show that if there exists a ppt adversary A such that

Pr[b′ = b | query] ≥ 1/2 + 1/poly(k),

then there exists a ppt adversary B that can succeed in attacking SKE′ (in the
sense of CRA-security) with non-negligible probability.

Consider B1 that, given 1k, begins by choosing K2 ∈ {0, 1}k and runs A1(1k)
as follows.

Given an encryption query 〈m, r〉, adversary B queries its oracle with 〈m, r〉
to obtain a ciphertext c It then computes t ← MacK2(c), and returns the
ciphertext 〈c, t〉 to A. It stores the tuple 〈c, t,m〉 in a table T .

Given a decryption query d = 〈c, t〉, adversary B looks up the pair 〈c, t〉 in
its table and returns the corresponding plaintext m. If the pair 〈c, t〉 is not in
T , then it returns ⊥. After polynomially many queries, A outputs messages
m0, m1 which B also outputs.

Given a challenge ciphertext c∗, adversary B computes t∗ ← MacK2(c∗) and
gives the challenge ciphertext 〈c∗, t∗〉 to A, answering its oracle queries as before.
Eventually, A outputs a bit b′ which B outputs as well.

It remains to analyze B’s success probability. First, notice that B can answer
A’s encryption queries perfectly. Furthermore, if query does not occur, then the
only valid decryption queries A makes are for ciphertexts that were the result
of previous encryption queries. In this case (i.e., conditioned on query), B will
also correctly answer all of A’s decryption queries (using its table). It follows
then that conditioned on query, the view of A is identical to its view when
attacking SKE. The claim follows.

References

1. B. Barak and S. Halevi. A model and architecture for pseudorandom generation
and applications to /dev/random. ACM Conf. on Computer and Communications
Security 2005.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. 38th Annual Symposium on Foundations of Computer
Science (FOCS) 1997.

3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. Asiacrypt 2000.

4. M. Bellare and B. Yee. Forward-security in private-key cryptography. RSA —
Cryptographers’ Track 2003.

5. C. Bosley and Y. Dodis. Does privacy require true randomness? Theory of Cryp-
tography Conference 2007.

6. Y. Dodis, S.J. Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of
cryptography with imperfect randomness. 45th Annual Symposium on Foundations
of Computer Science (FOCS) 2004.

7. Y. Dodis and J. Spencer. On the (non)universality of the one-time pad. 43rd
Annual Symposium on Foundations of Computer Science (FOCS) 2002.

8. K. Fu, S. Kamara, and T. Kohno. Key regression: Enabling efficient key distribu-
tion for secure distributed storage. NDSS 2006.

9. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM 33(4):792–807, 1984.

10. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences 28(2):270–299, 1984.

11. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Press, 2007.

12. J. Katz and M. Yung. Characterization of security notions for probabilistic private-
key encryption. J. Cryptology 19(1):67–96, 2006.

13. J. McInnes and B. Pinkas. On the impossibility of private-key cryptography with
weakly random keys. Advances in Cryptology — Crypto ’90.

14. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology – Crypto ’91.

15. P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption (FSE)
2004.

A Nonce-based Private-key Encryption

We offer a definition in the spirit of nonce-based security [15], but we do not
require that ciphertexts be indistinguishable from random strings. (This extra
requirement is irrelevant as far as the results of the present paper are concerned.)

Definition 2 (Nonce-based CPA-security). Let SKE = (Gen,Enc,Dec) be
a private-key encryption scheme where encryption uses k random coins and we
treat these coins as a nonce. SKE is nonce-based CPA-secure if the advantage of
any polynomial-time adversary A in the following experiment is negligible (in k):

1. First, a key K ← Gen(1k) is generated. Set Nonces = {0, 1}k.
2. A is allowed to adaptively submit multiple queries of the form 〈m, r〉, subject

always to the restriction that r ∈ Nonces. In response to each such a query,
A is given c = EncK(m; r) and r is removed from Nonces.

3. A outputs two equal-length messages m0, m1 and a nonce r ∈ Nonces. A
bit b is chosen at random, and a “challenge ciphertext” c = EncK(mb; r) is
computed and given to A. Also, r is removed from Nonces.

4. A may continue to interact with its oracle as before. Eventually, it outputs
a bit b′; the experiment evaluates to 1 if b′ = b.

We denote the above experiment by NB-CPAA,SKE(k), and define the advantage
of A in the experiment as

∣∣Pr[NB-CPAA,SKE(k) = 1]− 1
2

∣∣.

