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Abstract. We propose SWIFFT, a collection of compression functions that are highly parallelizable
and admit very efficient implementations on modern microprocessors. The main technique underlying
our functions is a novel use of the Fast Fourier Transform (FFT) to achieve “diffusion,” together with
a linear combination to achieve compression and “confusion.” We provide a detailed security analysis of
concrete instantiations, and give a high-performance software implementation that exploits the inherent
parallelism of the FFT algorithm. The throughput of our implementation is competitive with that of
SHA-256, with additional parallelism yet to be exploited.
Our functions are set apart from prior proposals (having comparable efficiency) by a supporting asymp-
totic security proof : it can be formally proved that finding a collision in a randomly-chosen function
from the family (with noticeable probability) is at least as hard as finding short vectors in cyclic/ideal
lattices in the worst case.

1 Introduction

In cryptography, there has traditionally been a tension between efficiency and rigorous security
guarantees. The vast majority of proposed cryptographic hash functions have been designed to be
highly efficient, but their resilience to attacks is based only on intuitive arguments and validated
by intensive cryptanalytic efforts. Recently, new cryptanalytic techniques [29, 30, 4] have started
casting serious doubts both on the security of these specific functions and on the effectiveness of
the underlying design paradigm.

On the other side of the spectrum, there are hash functions having rigorous asymptotic proofs
of security (i.e., security reductions), assuming that various computational problems (such as the
discrete logarithm problem or factoring large integers) are hard to solve on the average. Unfortu-
nately, all such proposed hash functions have had computation cost comparable to typical public
key cryptographic operations, making them unattractive from a practical point of view.

1.1 Our Proposal: SWIFFT

We propose the SWIFFT collection of compression functions, and give a high-performance software
implementation. SWIFFT is very appealing and intuitive from a traditional design perspective, and,
at the same time, achieves the robustness and reliability benefits of provable asymptotic security
under a mild computational assumption. The functions correspond to a simple algebraic expression
over a certain polynomial ring, as described in detail in Section 2.1. Here we describe a high-level
algorithm for the fast evaluation of a SWIFFT compression function.
! mod·est, adj.: Marked by simplicity.
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The algorithm takes as input a binary string of length mn (for suitable parameters m,n), which
is viewed as an n ×m binary matrix (xi,j) ∈ {0, 1}n×m. It then performs the following two steps,
where all operations are performed in Zp for an appropriate modulus p:

1. The input matrix (xi,j) is first processed by multiplying the ith row by ωi−1 for i = 1, . . . , n
(where ω ∈ Zp is an appropriate fixed element).
Then the Fast Fourier Transform (FFT) is computed (over Zp) on each column j = 1, . . . ,m:

(y1,j , . . . , yn,j) = FFT(ω0 · x1,j , . . . ,ω n−1 · xn,j).

We remark that this operation is easy to invert, and is performed to achieve “diffusion,” i.e., to
mix the input bits of every column.

2. A linear combination is then computed across each row i = 1, . . . , n:

zi = ai,1 · yi,1 + · · · + ai,m · yi,m =
∑m

j=1
ai,j · yi,j ,

where the coefficients ai,j ∈ Zp are fixed as part of the function description.
This operation compresses the input, achieving “confusion.”

The output is the vector (z1, . . . , zn) ∈ Zn
p .

Consider an attempt to invert the function, i.e., to find some input (xi,j) that evaluates to a
given output (z1, . . . , zn). Viewed independently, each linear equation zi =

∑m
j=1 ai,j · yi,j on the

rows admits a large number of easily-computed solutions. However, there are strong dependencies
among the equations. In particular, every column (y1,j , . . . , yn,j) is constrained to be the result of
applying Step 1 to an n-dimensional binary vector (x1,j , . . . , xn,j) ∈ {0, 1}n.

Perhaps surprisingly, these constraints turn out to be sufficient to guarantee asymptotically
that the SWIFFT functions are provably one-way and collision-resistant. More precisely, the family
admits a very strong security reduction: finding collisions on the average (when the coefficients
ai,j are chosen at random in Zp) with any noticeable probability is at least as hard as solving an
underlying mathematical problem on certain kinds of point lattices in the worst case. This claim
follows from the fact that the SWIFFT functions are a special case of the cyclic/ideal lattice-based
functions of [18, 21, 16].

SWIFFT’s simple design has a number of other advantages. First, it also enables unconditional
proofs of a variety of statistical properties that are desirable in many applications of hash functions,
both in cryptography and in other domains. Second, its underlying mathematical structure is closely
related to well-studied cryptographic problems, which permits easy understanding and analysis of
concrete instantiations. Third, it is extremely parallelizable, and admits software implementations
with throughput comparable to (or even exceeding) the SHA-2 family on modern microprocessors.

While SWIFFT satisfies many desirable cryptographic and statistical properties, we caution
that it was not designed to be an “all-purpose” cryptographic hash function. For example, it is not
(by itself) a pseudorandom function, and would not be a suitable instantiation of a random oracle.
(See Section 4 for more details.) In addition, while the concrete parameters were chosen so as to
resist all known feasible attacks, SWIFFT does not achieve full “birthday bound” security of 2n/2

for collision attacks with an n-bit output, nor 2n security for inversion attacks. (See Section 5 for
more details.)



1.2 Related Work

Using the Fast Fourier Transform (FFT) as a building block in hash functions is not new. For ex-
ample, Schnorr et al proposed a variety of FFT-based hash functions [24–26], which unfortunately
were subsequently cryptanalyzed and shown to be insecure [9, 2, 27]. Our compression functions
are set apart from previous work by the way that the FFT is used, and the resulting proof of
security. Namely, while in previous work [24–26] the FFT was applied to unrestricted input vectors
(x1, . . . , xn) ∈ Zn

p , here we require the input values xi to be bits. This introduces non-linear con-
straints on the output values of the FFT operation, a fact that plays a fundamental role both in
our theoretical proof of security, as well as on the analysis of our concrete functions. Our novel use
of FFT may be of independent interest, and might find other applications in cryptographic design.

The subset-sum and knapsack problems have long ago been suggested as foundations for com-
pression functions, e.g., by Damg̊ard [10]. Unfortunately, these functions are only efficient in small
dimensions, at which point lattice-based attacks [14] and other forms of cryptanalysis [7] become
possible.

An important ingredient in the conceptual design of our functions (and associated proof of
security) is the use of lattices with special structure as an underlying mathematical problem. Special
classes of lattices (with closely related, but somewhat different structure than ours) also have been
used before in practical constructions (most notably, the NTRU encryption scheme [13] and LASH
hash function [3]), but without any security proofs.

Most closely related to our work is the theoretical study initiated by Ajtai [1] of subset sum-like
cryptographic functions that are provably secure under worst-case assumptions for lattice problems.
Ajtai’s work and subsequent improvements [11, 6, 17, 19] do not lead to very efficient implementa-
tions, mostly because of the huge size of the function description and slow evaluation time (which
grow quadratically in the security parameter). A first step toward bridging the gap between the-
oretical constructions and practical functions was taken by Micciancio [18], who proposed using
lattices with special structure (namely, cyclic lattices) and showed how they lead to cryptographic
functions that have provable worst-case hardness and also admit fast implementations using FFT.
The main limitation of the functions proposed in [18] was the notion of security achieved: they are
provably one-way (under a worst-case assumption on cyclic lattices), but not collision resistant.
Peikert and Rosen [21] and Lyubashevsky and Micciancio [16] then modified and generalized the
function originally proposed in [18] to achieve collision resistance.

From a theoretical point of view, the SWIFFT functions proposed in this paper are equivalent
to and inherit all provable security features from the cyclic/ideal hash functions of [21, 16]. But
differently from [18, 21, 16], the emphasis in this paper is on practical implementation issues, and
the construction of concrete instances and variants of those functions that enjoy very efficient
implementation from a practical point of view. For a deeper understanding of the theoretical ideas
underlying the proofs of security of our compression functions, we refer the reader to [18, 21, 16].

2 SWIFFT Compression Functions

In this section, we describe an algebraic expression that is the underlying foundation of the SWIFFT
functions, and how it is related to the FFT-based algorithm described in Section 1.1. We then
propose a set of concrete parameters on which our implementation and security analysis are based.



2.1 Algebraic Description

The SWIFFT functions correspond to a simple algebraic expression over a certain polynomial ring.
A family of SWIFFT functions is described by three main parameters: let n be a power of 2, let
m > 0 be a small integer, and let p > 0 be a modulus (not necessarily prime, though we will soon
see that certain prime p will be convenient). Define R to be the ring R = Zp[α]/(αn + 1), i.e., the
ring of polynomials (in α) having integer coefficients, modulo p and αn + 1. Any element of R may
therefore be written as a polynomial of degree < n having coefficients in Zp = {0, . . . , p− 1}.

A particular function in the family is specified by m fixed elements a1, . . . ,am ∈ R of the ring
R, called “multipliers.” The function corresponds to the following expression over the ring R:

∑m

i=1
(ai · xi) ∈ R, (1)

where x1, . . . ,xm ∈ R are polynomials having binary coefficients, and corresponding to the binary
input of length mn.

To compute the above expression, the main bottleneck is in computing the polynomial products
ai ·xi over R. It is well-known that the Fast Fourier Transform (FFT) provides an O(n log n)-time
algorithm that can be used for multiplying polynomials of degree < n. The multiplication algorithm
starts by using the FFT to compute (all at once) the Fourier coefficients of each polynomial, i.e.,
the values on all the 2nth roots of unity over the complex field C. It then multiplies the respective
Fourier coefficients of the two polynomials, and finally interpolates back to a degree < 2n polynomial
via an inverse FFT.

Because we are working modulo p and αn + 1, there is an even more convenient and efficient
method for computing the polynomial products in the ring R. Suppose that p is prime and p − 1
is a multiple of 2n. Then Zp is a field, and it contains a multiplicative subgroup of order 2n whose
elements are all the 2nth roots of unity in Zp (i.e., the roots of the polynomial α2n − 1 mod p).
Let ω ∈ Zp be some generator of this subgroup, i.e., an element of order 2n. The n odd powers
ω1, ω3, . . . ,ω 2n−1 are exactly the primitive 2nth roots of unity, i.e., the roots of αn + 1.

In order to compute a polynomial product ai · xi modulo p and αn + 1, it suffices to compute
only the n primitive Fourier coefficients of ai and xi, i.e., the values ai(ω1),ai(ω3), . . . ,ai(ω2n−1),
and likewise for xi. The primitive coefficients can be computed all at once by preprocessing the
input and then applying an n-dimensional FFT (which uses half the space), as described in the
algorithm from Section 1.1. Furthermore, because the field Zp has roots of unity, the FFT can be
performed over Zp using the nth primitive root of unity ω2, instead of over C.4

In addition to using an FFT, other significant optimizations are possible when computing Ex-
pression (1). First, because the multipliers ai are fixed in advance and determined uniquely by
their primitive Fourier coefficients, we can simply store and work with their Fourier representation.
Additionally, because the FFT is linear and a bijection, there is no need to even apply an inverse
FFT. In other words, the value of Expression (1) is correctly and uniquely determined by summing
the Fourier representations of ai · xi. Combining all these observations, we are left with the high-
level algorithm as described in Section 1.1, which we implement (using additional optimizations)
in Section 3.

4 Performing an FFT over Zp rather than C is often called a number theoretic transform (NTT) in the literature;
however, we will retain the FFT terminology due to broad familiarity.



2.2 Concrete Parameters

In this paper we primarily study one family of SWIFFT compression functions, obtained by choosing
concrete values for the parameters n, m, and p as follows:

n = 64, m = 16, p = 257.

For these parameters, any fixed compression function in the family takes a binary input of length
mn = 1024 bits (128 bytes), to an output in the range Zn

p , which has size pn = 25764 ≈ 2512. An
output in Zn

p can easily be represented using 528 bits (66 bytes). Other unambiguous representations
(using > 512 bits) are also possible; the representation does not affect security.

We now briefly explain our choice of parameters. The first consideration is the security of
the compression function. As we will explain in the security analysis of Section 5, the function
corresponds to a subset-sum from mn bits to roughly n lg p bits. We first set the constraints mn =
1024 and n lg p ≈ 512, because solving such subset-sum problems appears to be intractable. In
order for our proofs of security to go through, we also need the polynomial αn +1 to be irreducible
over Z[α], which is true if and only if n is a power of 2. (If a reducible polynomial is used, actual
attacks can become possible, as we show in Section 5.3 for similar functions in the literature.)

Next, we optimize the running time and space of the function by choosing n to be relatively
large, and p and m to be small, subject to the above constraints. As discussed above, the Fast
Fourier Transform is most efficiently and conveniently computed when p is prime and p − 1 is a
multiple of 2n.

Finally, to fix one concrete function from the family, the multipliers ai should be chosen uni-
formly and independently at random from the ring R; this is equivalent to choosing their primitive
Fourier coefficients uniformly and independently at random from Zp. We note that the multipli-
ers (or their Fourier coefficients) should be chosen using “trusted randomness,” otherwise it may
be possible to embed a “backdoor” in the resulting function. For example, one might derive the
multipliers using some deterministic transformation on the digits of π.

3 Implementation

Our implementation uses two main techniques for achieving high performance, both relating to the
structure of the Fast Fourier Transform (FFT) algorithm. The first observation is that the input
to the FFT is a binary vector, which limits the number of possible input values (when restricting
our view to a small portion of the input). This allows us to precompute and store the results of
several initial iterations of the FFT in a lookup table. The second observation is that the FFT
algorithm consists of operations repeated in parallel over many pieces of data, for which modern
microprocessors have special-purpose instruction sets.

Recall the parameters n = 64, m = 16, and modulus p = 257. Let ω be a 128th root of unity
in Zp = Z257, i.e., an element of order 128 = 2n. (We will see later that it is convenient to choose
ω = 42, but most of the discussion is independent from the choice of ω.)

The compression function takes an mn = 1024-bit input, viewed as m = 16 binary vectors
x0, . . . ,x15 ∈ {0, 1}64. (For convenience, entries of a vector or sequence are numbered starting from
0 throughout this section.) The function first processes each vector xj , multiplying its ith entry by
ωi (for i = 0, . . . , 63), and then computing the Fourier transform of the resulting vector using ω2



as a 64th root of unity. More precisely, each input vector xj ∈ {0, 1}64 is mapped to yj = F (xj),
where F : {0, 1}64 → Z64

257 is the function

F (x)i =
63∑

k=0

(xk · ωk) · (ω2)i·k =
63∑

k=0

xk · ω(2i+1)k. (2)

The final output z of the compression function is then obtained by computing 64 distinct linear
combinations (modulo 257) across the ith entries of the 16 yj vectors:

zi =
15∑

j=0

ai,j · yi,j (mod 257),

where the ai,j ∈ Z257 are the primitive Fourier coefficients of the fixed multipliers.

Computing F . The most expensive part of the computation is clearly the computation of the
transformation F on the 16 input vectors xj , so we first focus on the efficient computation of F .
Let y = F (x) ∈ Z64

257 for some x ∈ {0, 1}64. Expressing the indices i, k from Equation (2) in octal
as i = i0 + 8i1 and k = k0 + 8k1 (where j0, j1, k0, k1 ∈ {0, . . . , 7}), and using ω128 = 1 (mod 257),
the ith component of y = F (x) is seen to equal

yi0+8i1 =
7∑

k0=0

(ω16)i1·k0

(
ω(2i0+1)k0 ·

7∑

k1=0

ω8k1(2i0+1) · xk0+8k1

)

=
7∑

k0=0

(ω16)i1·k0 (mk0,i0 · tk0,i0) ,

where mk0,i0 = ω(2i0+1)k0 and tk0,i0 =
∑7

k1=0 ω8k1(2i0+1)xk0+8k1 . Our first observation is that each
8-dimensional vector tk0 = (tk0,0, tk0,1, . . . , tk0,7) can take only 256 possible values, depending on
the corresponding input bits xk0 , xk0+8, . . . , xk0+8·7. Our implementation parses each 64-bit block
of the input as a sequence of 8 bytes X0, . . . , X7, where Xk0 = (xk0 , xk0+8, . . . , xk0+8·7) ∈ {0, 1}8,
so that each vector tk0 can be found with just a single table look-up operation tk0 = T (Xk0), using
a table T with 256 entries. The multipliers mk0 = (mk0,0, . . . ,mk0,7) can also be precomputed.

The value y = F (x) can be broken down as 8 (8-dimensional) vectors

yi1 = (y8i1 , y8i1+1, . . . , y8i1+7) ∈ Z8
257.

Our second observation is that, for any i0 = 0, . . . , 7, the i0th component of yi1 depends only on
the i0th components of mk0 and tk0 . Moreover, the operations performed for every coordinate are
exactly the same. This permits parallelizing the computation of the output vectors y0, . . . ,y7 using
SIMD (single-instruction multiple-data) instructions commonly found on modern microprocessors.
For example, Intel’s microprocessors (starting from the Pentium 4) include a set of so-called SSE2
instructions that allow operations on a set of special registers each holding an 8-dimensional vector
with 16-bit (signed) integer components. We only use the most common SIMD instructions (e.g.,
component-wise addition and multiplication of vectors), which are also found on most other modern
microprocessors, e.g., as part of the AltiVec SIMD instruction set of the Motorola G4 and IBM G5
and POWER6. In the rest of this section, operations on 8-dimensional vectors like mk0 and tk0 are



interpreted as scalar operations applied component-wise to the vectors, possibly in parallel using a
single SIMD instruction.

Going back to the computation of F (x), the output vectors yi1 can be expressed as

yi1 =
7∑

k0=0

(ω16)i1·k0(mk0 · tk0).

Our third observation is that the latter computation is just a sequence of 8 component-wise multi-
plications mk0 ·tk0 , followed by a single 8-dimensional Fourier transform using ω16 as an 8th root of
unity in Z257. The latter can be efficiently implemented using a standard FFT network consisting
of just 12 additions, 12 subtractions and 5 multiplications.

Optimizations relating to Z257. One last source of optimization comes from two more observations
that are specific to the use of 257 as a modulus, and the choice of ω = 42 as a 128th root of unity.
One observation is that the root used in the 8-dimensional FFT computation equals ω16 = 22

(mod 257). So, multiplication by (ω16), (ω16)2 and (ω16)3, as required by the FFT, can be simply
implemented as left bit-shift operations (by 2, 4, and 6 positions, respectively). Moreover, analysis
of the FFT network shows that modular reduction can be avoided (without the risk of overflow
using 16-bit arithmetic) for most of the intermediate values. Specifically, in our implementation,
modular reduction is performed for only 3 of the intermediate values. The last observation is that,
even when necessary to avoid overflow, reduction modulo 257 can be implemented rather cheaply
and using common SIMD instructions, e.g., a 16-bit (signed) integer can be reduced to the range
{−127, . . . , 383} using x ≡ (x ∧ 255)− (x ( 8) mod 257, where ∧ is the bit-wise “and” operation,
and ( 8 is a right-shift by 8 bits.

Summary and performance. In summary, function F can be computed with just a handful of
table look-ups and simple SIMD instructions on 8 dimensional vectors. The implementation of the
remaining part of the computation of the compression function (i.e., the scalar products between
yi,j and ai,j) is straightforward, keeping in mind that this part of the computation can also be
parallelized using SIMD instructions, and that reduction modulo 257 is rarely necessary during the
intermediate steps of the computation due to the use of 16-bit (or larger) registers.

We implemented and tested our function on a 3.2GHz Intel Pentium 4. The implementation
was written in C (using the Intel intrinsics to instruct the compiler to use SSE2 instructions), and
compiled using gcc version 4.1.2 (compiler flags -O3) on a PC running under Linux kernel 2.6.18.
Our tests show that our basic compression function can be evaluated in 1.5 µs on the above system,
yielding a throughput close to 40 MB/s in a standard chaining mode of operation. For comparison,
we tested SHA256 on the same system using the highly optimized implementation in openssl
version 0.9.8 (using the openssl speed benchmark), yielding a throughput of 47 MB/s when run
on 8KB blocks.

Further optimizations. We remark that our implementation does not yet take advantage of all
the potential for parallelism. In particular, we only exploited SIMD-level parallelism in individual
evaluations of the transformation function F . Each evaluation of the compression function involves
16 applications of F , and subsequent multiplication of the result by the coefficients ai,j . These 16
computations are completely independent, and can be easily executed in parallel on a multicore
microprocessor. Our profiling data shows that the FFT computations and multiplication by ai,j



currently account for about 90% of the running time. So, as multicore processors become more
common, and the number of cores available on a processor increases, one can expect the speed
of our function to grow almost proportionally to the number of cores, at least up to 16 cores.
Finally, we point out that FFT networks are essentially “optimally parallelizable,” and that our
compression function has extremely small circuit depth, allowing it to be computed extremely fast
in customized hardware.

4 Properties of SWIFFT

Here we review a number of statistical and cryptographic properties that are often desirable in
hash functions, and discuss which properties our functions do and do not satisfy.

4.1 Statistical Properties

Here we review a number of many well-known and useful statistical properties that are often desir-
able in a family of hash functions, in both cryptographic and non-cryptographic applications (e.g.,
hash tables, randomness generation). All of these statistical properties can be proved uncondition-
ally, i.e., they do not rely on any unproven assumptions about any computational problems.

Universal hashing. A family of functions is called universal if, for any fixed distinct x, x′, the
probability (over the random choice of f from the family) that f(x) = f(x′) is the inverse of the
size of the range. It is relatively straightforward to show that our family of compression functions
is universal (this property is used implicitly in the proofs for the statistical properties below).

Regularity. A function f is said to be regular if, for an input x chosen uniformly at random from
the domain, the output f(x) is distributed uniformly over the range. More generally, the function is
ε-regular if its output distribution is within statistical distance (also known as variation distance)
ε from uniform over the range. The only randomness is in the choice of the input.

As first proved in [18], our family of compression functions is regular in the following sense:
all but an ε fraction of functions f from the family are ε-regular, for some negligibly small ε. The
precise concrete value of ε is determined by the particular parameters (n, m, p) of the family.

Randomness extraction. Inputs to a hash function are often not chosen uniformly from the domain,
but instead come from some non-uniform “real-world” distribution. This distribution is usually
unknown, but may reasonably be assumed to have some amount of uncertainty, or min-entropy.
For hash tables and related applications, it is usually desirable for the outputs of the hash function
to be distributed uniformly (or as close to uniformly as possible), even when the inputs are not
uniform. Hash functions that give such guarantees are known as randomness extractors, because
they “distill” the non-uniform randomness of the input down to an (almost) uniformly-distributed
output. Formally, randomness extraction is actually a property of a family of functions, from which
one function is chosen at random (and obliviously to the input).

The proof of regularity for our functions can be generalized to show that they are also good
randomness extractors, for input distributions having enough min-entropy.



4.2 Cryptographic Properties

Here we discuss some well-known properties that are often desirable in cryptographic applications
of hash functions, e.g., digital signatures. Under relatively mild assumptions, our functions satisfy
several (but not all) of these cryptographic properties. (For precise definitions, see, e.g., [23].)

Informally, a function f is said to one-way if, given the value y = f(x) for an x chosen uniformly
at random from the domain, it is infeasible for an adversary to find any x′ in the domain such that
f(x′) = y. It is second preimage resistant if, given both x and y = f(x) (where x is again random),
it is infeasible to find a different x′ )= x such that f(x′) = y. These notions also apply to families
of functions, where f is chosen at random from the family.

A family of functions is target collision resistant (also called universal one-way) if it is infeasible
to find a second preimage of x under f , where x is first chosen by the adversary (instead of at
random) and then the function f is chosen at random from the family. Finally, the family is fully
collision resistant if it is infeasible for an adversary, given a function f chosen at random from the
family, to find distinct x, x′ such that f(x) = f(x′).

For functions that compress their inputs, the notions above are presented in increasing order
of cryptographic strength. That is, collision resistance implies target collision resistance, which
in turn implies second preimage resistance, which in turn implies one-wayness. All of the above
notions are computational, in that they refer to the infeasibility (i.e., computational difficulty) of
solving some cryptographic problem. However, the concrete effort required to violate these security
properties (i.e., the meaning of “infeasible”) will vary depending on the specific security notion
under consideration, and is discussed in more detail below in Section 5.

As shown in [21, 16], our family of compression functions is provably collision resistant (in an
asymptotic sense), under a relatively mild assumption about the worst-case difficulty of finding
short vectors in cyclic/ideal lattices. This in turn implies that the family is also one-way and
second preimage resistant. In Section 5.1, we give a detailed discussion and interpretation of the
security proofs. In Section 5.2, we discuss the best known attacks on the cryptographic properties
of our concrete functions, and give estimates of their complexity.

4.3 Properties Not Satisfied by SWIFFT

For general-purpose cryptographic hash functions and in certain other applications, additional
properties are often desirable. We discuss some of these properties below, but stress that our
functions do not satisfy these properties, nor were they intended or designed to.

Pseudorandomness. Informally, a family of functions is pseudorandom if a randomly-chosen function
from the family “acts like” a truly random function in its input-output behavior. More precisely,
given (adaptive) oracle access to a function f , no adversary can efficiently distinguish between the
case where (1) f is chosen at random from the given family, and (2) every output of f is uniformly
random and independent of all other outputs. (The formal definition is due to [12].) We stress that
the adversary’s view of the function is limited to oracle access, and that the particular choice of
the function from the family is kept secret.

Our family of functions is not pseudorandom (at least as currently defined), due to linearity.
Specifically, for any function f from our family and any two inputs x1, x2 such that x1 +x2 is also a
valid input, we have f(x1)+f(x2) = f(x1 +x2). This relation is very unlikely to hold for a random
function, so an adversary can easily distinguish our functions from random functions by querying



the inputs x1, x2, and x1 + x2. However, this homomorphism might actually be considered as a
useful feature of the function in certain applications (much like homomorphic encryption).

With additional techniques, it may be possible to construct a family of pseudorandom functions
(under suitable lattice assumptions) using similar design ideas.

Random oracle behavior. Intuitively, a function is said to behave like a random oracle if it “acts
like” a truly random function. This notion differs from pseudorandomness in that the function is
fixed and public, i.e., its entire description is known to the adversary. Though commonly used,
the notion of “behaving like a random oracle” cannot be defined precisely in any meaningful or
achievable way. Needless to say, we do not claim that our functions behave like a random oracle.

5 Security Analysis

In this section, we interpret our asymptotic proofs of security for collision-resistance and the other
claimed cryptographic properties. We then consider cryptanalysis of the functions for our specific
choice of parameters, and review the best known attacks to determine concrete levels of security.

5.1 Interpretation of Our Security Proofs

As mentioned above, an asymptotic proof of one-wayness for SWIFFT was given in [18], and
an asymptotic proof of collision-resistance (a stronger property) was given independently in [21]
and [16]. As in most cryptography, security proofs must rely on some precisely-stated (but as-yet
unproven) assumption. Our assumption, stated informally, is that finding relatively short nonzero
vectors in n-dimensional ideal lattices over the ring Z[α]/(αn + 1) is infeasible in the worst case, as
n increases. (See [18, 21, 16] for precise statements of the assumption.)

Phrased another way, the proofs of security say the following. Suppose that our family of
functions is not collision resistant; this means that there is an algorithm that, given a randomly-
chosen function f from our family, is able to find a collision in f in some feasible amount of time
T . The algorithm might only succeed on a small (but noticeable) fraction of f from the family, and
may only find a collision with some small (but noticeable) probability. Given such an algorithm,
there is also an algorithm that can always find a short nonzero vector in any ideal lattice over the
ring Z[α]/(αn + 1), in some feasible amount of time related to T and the success probability of the
collision-finder. We stress that the best known algorithms for finding short nonzero vectors in ideal
lattices require exponential time in the dimension n, in the worst case.

The importance of worst-case assumptions in lattice-based cryptography cannot be overstated.
Robust cryptography requires hardness on the average, i.e., almost every instance of the primitive
must be hard for an adversary to break. However, many lattice problems are heuristically easy to
solve on “many” or “most” instances, but still appear hard in the worst case on certain “rare”
instances. Therefore, worst-case security provides a very strong and meaningful guarantee, whereas
ad-hoc assumptions on the average-case difficulty of lattice problems may be unjustified. Indeed, we
are able to find collisions in compression function of the related LASH-x family of hash functions [3]
by falsifying its underlying (ad-hoc) average-case lattice assumption (see Section 5.3).

At a minimum, our asymptotic proofs of security indicate that there are no unexpected “struc-
tural weaknesses” in the design of SWIFFT. Specifically, violating the claimed security properties
(in an asymptotic sense) would necessarily require new algorithmic insights about finding short
vectors in arbitrary ideal lattices (over the ring Z[α]/(αn + 1)). In Section 5.3, we demonstrate the



significance of our proofs by giving examples of two compression functions from the literature that
look remarkably similar to ours, but which admit a variety of very easily-found collisions.

Connection to algebraic number theory. Ideal lattices are well-studied objects from a branch of
mathematics called algebraic number theory, the study of number fields. Let n be a power of 2,
and let ζ2n ∈ C be a primitive 2nth root of unity over the complex numbers (i.e., a root of the
polynomial αn+1). Then the ring Z[α]/(αn+1) is isomorphic to Z[ζ2n], which is the ring of integers
of the so-called cyclotomic number field Q(ζ2n). Ideals in this ring of integers (more generally, in
the ring of integers of any number field) map to n-dimensional lattices under what is known as the
canonical embedding of the number field. These are exactly the ideal lattices for which we assume
finding short vectors is difficult in the worst case.5 Further connections between the complexity of
lattice problems and algebraic number theory were given by Peikert and Rosen [22].

For the cryptographic security of our hash functions, it is important that the extra ring structure
does not make it easier to find short vectors in ideal lattices. As far as we know, and despite being a
known open question in algebraic number theory, there is no apparent way to exploit this algebraic
structure. The best known algorithms for finding short vectors in ideal lattices are the same as those
for general lattices, and have similar performance. It therefore seems reasonable to conjecture that
finding short vectors in ideal lattices is infeasible (in the worst case) as the dimension n increases.

5.2 Known Attacks

We caution that our asymptotic proofs do not necessarily rule out cryptanalysis of specific parameter
choices, or ad-hoc analysis of one fixed function from the family. To quantify the exact security
of our functions, it is still crucially important to cryptanalyze our specific parameter choices and
particular instances of the function.

A central question in measuring the security of our functions is the meaning of “infeasible” in
various attacks (e.g., collision-finding attacks). Even though our functions have an output length of
about n lg p bits, we do not claim that they enjoy a full 2n lg p “level of security” for one-wayness,
nor a 2(n lg p)/2 level of security for collision resistance. Instead, we will estimate concrete levels
of security for our specific parameter settings. This is akin to security estimates for public-key
primitives like RSA, where due to subexponential-time factoring algorithms, a 1024-bit modulus
may offer only (say) a 2100 concrete level of security.

In Section 5.2, we describe how the currently best-known algorithm to find collisions in our
functions takes time at least 2106 and requires almost as much space. In Section 5.2, we describe
the best-known inversion attacks, which require about 2448 time (but a small amount space).

Throughout this section, it will be most convenient to cryptanalyze our functions using their
algebraic characterization as described in Section 2.1, and in particular, Equation (1).

Connection to Subset Sum A very useful view of our compression function is as a subset sum
function in which the weights come from the additive group Zn

p , and are related algebraically.
An element a in the ring R = Zp[α]/(αn +1) can be written as a0 +a1α+ . . .+an−1αn−1, which

we can represent as a vector (a0, . . . , an−1) ∈ Zn
p . Because αn ≡ −1 in the ring R, the product of

5 In [18, 21, 16], the mapping from ideals to lattices is slightly different, involving the coefficient vectors of elements in
Z[ζ2n] rather than the canonical embedding. However, both mappings are essentially the same in terms of lengths
of vectors, and the complexity of finding short vectors is the same under both mappings.



two polynomials a,x ∈ R is represented by the matrix product of the square skew-circulant matrix
of a with the vector representation of x:

a · x ∈ R ↔





a0 −an−1 · · ·− a1

a1 a0 · · ·− a2
... . . .

an−1 an−2 · · · a0









x0

x1
...

xn−1




mod p (3)

Thus we can interpret Equation (1) (with fixed multipliers a1, . . . ,am) as multiplying a fixed matrix
A ∈ Zn×mn

p by an input vector x ∈ {0, 1}mn. The matrix A has the form

A = [A1| · · · |Am] (4)

where each Ai is the n × n skew-circulant matrix of ai. Ignoring for a moment the algebraic
dependencies within each Ai, this formulation is equivalent to a subset sum function over the
group Zn

p . Indeed, the output of our function is just the sum of a subset of the mn column vectors
of A. And in fact, the fastest known algorithm for inverting (or finding collisions in) our function f
is the same one that is used for solving the high density subset sum problem [28, 15]. We describe
this algorithm next.

Generalized Birthday Attack Finding a collision in our function is equivalent to finding a
nonzero x ∈{− 1, 0, 1}mn such that

Ax = 0 mod p (5)

where A is as in Equation (4). This is because if we find a {−1, 0, 1}-combination of the columns
of A that sums to 0 mod p, the subset of the columns corresponding to the −1s collides with the
subset corresponding to the 1s. We will now describe an algorithm for finding such an x for the
specific parameters n = 64, m = 16, p = 257. Our goal is to provide a lower bound on the running
time of the most efficient known algorithm for breaking our function. Therefore the analysis of the
function will be fairly conservative.

Given a 64× 1024 matrix A whose coefficients are in Z257, we proceed as follows:

1. Randomly break up the 1024 column vectors of A into 16 groups of 64 vectors each.
2. From each group, create a list of 364 vectors where each vector in the list is a different {−1, 0, 1}-

combination of the vectors in the group.

We now have 16 lists each containing 364 ≈ 2102 vectors in Z64
257. Notice that if we are able to find

one vector from each list such that their sum is the zero vector, then we can solve Equation 5.
Finding one vector from each list such that the sum is 0 is essentially the k-list problem that

was studied by Wagner [28], and is also related to the technique used by Blum et al [5] for solving
the parity problem in the presence of noise. The idea is to use the lists to obtain new lists of vectors
that are {−1, 0, 1}-combinations of A’s columns, but which have many coordinates that are 0. We
then continue forming lists in which the vectors have more and more coordinates equal to 0. More
precisely, we continue with the algorithm in the following way:

3. Pair up the 16 lists in an arbitrary way.
4. For each pair of lists (Li, Lj), create a new list Li,j such that every vector in Li,j is the sum

of one vector from Li and one vector from Lj , and the first 13 positions of the vector are all 0
modulo 257.



There are a total of 25713 ≈ 2104 different values that a vector in Z64
257 can take in its first 13

entries. Since the lists Li and Lj each contain 364 ≈ 2102 vectors, there are a total of 2204 possible
vectors that could be in Li,j . If we heuristically assume that each of the 25713 ≈ 2104 possible values
of the first 13 coordinates are equally likely to occur6, then we expect the list Li,j to consist of
2204 ·2−104 = 2100 vectors whose first 13 coordinates are all 0. For convenience, we will assume that
the lists have 2102 vectors (this again is a conservative assumption that is in the algorithm’s favor).

At the end of Step 4, we have 8 lists, each with 2102 vectors in Z64
257 whose first 13 coordinates

are zero. We can now pair up these 8 lists and create 4 lists of 2102 vectors whose first 26 coordinates
are zero. We continue until we end up with one list of 2102 elements whose first 52 coordinates are
zero. This means that only the last 12 coordinates of these vectors may be nonzero. If the vectors
are randomly distributed in the last 12 coordinates, then there should be a vector which consists
of all zeros (because there are only 25712 ≈ 296 possibilities for the last 12 coordinates).

Since we started out with 16 lists of 2102 elements, the running time of the algorithm is at least
16 · 2102 = 2106. Notice that it also requires at least 2102 space.

Inversion Attacks Consider the interpretation of our function where we multiply the matrix A
from Equation (4) by an input vector x ∈ {0, 1}1024. With extremely high probability, the matrix
A has a set of 64 columns that are linearly independent (modulo p); without loss of generality,
assume that they are the last 64 columns. We can then write A as [B|C] where B consists of the
first 960 columns and C is a 64 × 64 non-singular matrix. In an inversion attack, we have some
specified y ∈ Z64

257 and want to find an x ∈ {0, 1}1024 such that Ax = y mod 257.
The best attack of which we are aware proceeds by guessing all but 64 of the input bits, and

then solving for the remaining 64 to see if a valid input is obtained:

1. Pick a random vector xB ∈ {0, 1}960.
2. Compute vector xC = C−1(y −BxB) mod p
3. If xC ∈ {0, 1}64, then output x = [xB|xC ]. Otherwise, start over.

The product BxB mod p is distributed almost-uniformly in Z64
257, due to the regularity property

of our function. Then because the matrix C is non-singular, the product C−1(y − BxB) mod p
is almost-uniformly distributed in Z64

257. Therefore, the probability that C−1(y −BxB) mod p is a
binary vector is approximately 264/|Z64

257| ≈ 2−448. Thus, we can expect to find a preimage for y in
about 2448 time. (Everything above applies equally well to second preimage attacks.)

Lattice Attacks Lattice reduction is a possible alternative way to find a nonzero vector x ∈
{−1, 0, 1}mn that will satisfy Equation (5). If we think of the matrix A as defining a linear homo-
morphism from Zmn to Zn

p , then the kernel of A is ker(A) = {y ∈ Zmn : Ay ≡ 0 mod p}. Notice
that ker(A) is a lattice of dimension mn, and a vector x ∈{− 1, 0, 1}mn such that Ax ≡ 0 mod p
is a shortest nonzero vector in the &∞ or “max” norm of this lattice.

Because a basis for ker(A) can be computed efficiently given A, finding a shortest nonzero
vector (in the &∞ norm) of the lattice would yield a collision in our compression function. The
lattice ker(A) shares many properties with the commonly occurring knapsack-type lattice (see,
e.g., [20]). Our lattice is essentially a knapsack-type lattice with some additional algebraic structure.
It is worthwhile to note that none of the well-known lattice reduction algorithms take advantage of
6 This is true if all the vectors in the lists are random and independent in Z64

257, but this is not quite the case.
Nevertheless, since we are being conservative, we will assume that the algorithm will still work.



the algebraic structure that arises here. Because the dimension 1024 of our lattice is too large for
the current state-of-the-art reduction algorithms, breaking our function via lattice reduction would
require some very novel idea to exploit the additional algebraic structure. As things stand right
now, we believe that the generalized birthday technique described in the previous section provides
a more efficient algorithm for finding collisions in our function.

Viewing the kernel as a lattice also leads naturally to a relaxed notion of “pseudo-collisions” in
our function, which are defined in terms other norms, e.g., the Euclidean &2 norm or “Manhattan” &1

norm. Note that for any actual collision corresponding to an x ∈ ker(A), we have x ∈{− 1, 0, 1}mn

and therefore the &2 norm of x is ‖x‖2 ≤
√

mn. However, not every nonzero x ∈ ker(A) with ‖x‖2 ≤√
mn determines a collision in our function, because the entries of x may lie outside {−1, 0, 1}. We

say that such an x is a pseudo-collision for the &2 norm. More generally, a pseudo-collision for any
&p norm (1 ≤ p < ∞) is defined to be a nonzero x ∈ ker(A) such that ‖x‖p ≤ (mn)1/p. The set of
pseudo-collisions only grows as p decreases from ∞ to 1, so finding pseudo-collisions using lattice
reduction might be easier in norms such as &2 or &1. Finding pseudo-collisions could be a useful
starting point for finding true collisions.

5.3 Cryptanalysis of Similar Functions

In this section, we briefly discuss two other compression functions appearing in the literature that
bear a strong resemblance to ours, but which do not have asymptotic proofs of collision resistance.
In fact, these compression functions are not collision resistant, and admit quite simple collision-
finding algorithms. The attacks are made possible by a structural weakness that stems from the use
of circulant matrices, which correspond algebraically to rings that are not integral domains. Inter-
estingly, integral domains are the crucial ingredient in the asymptotic proofs of collision resistance
for our function [21, 16]. We believe that this distinction underscores the usefulness and importance
of security proofs, especially worst-case hardness proofs for lattice-based schemes.

Micciancio’s Cyclic One-Way Function The provably one-way function described by Miccian-
cio [18] is very similar to SWIFFT, and was the foundation for the subsequent collision-resistant
functions on which this paper is based [21, 16]. Essentially, the main difference between Miccian-
cio’s function and the ones presented in [21, 16] is that the operations are performed over the ring
Zp[α]/(αn− 1) rather than Zp[α]/(αn +1). This difference, while seemingly minor, makes it almost
trivial to find collisions, as shown in [21, 16].

Just like ours, Micciancio’s function has an interpretation as the product of a matrix A (as in
Equation (4)) and a vector x ∈ {0, 1}mn. The only difference is the matrices Ai from Equation (4)
are circulant, rather than skew-circulant (i.e., just like Equation (3), but without negations).

Notice that in the vector product of a circulant matrix Ai with the all-1s vector 1, all of the
entries are the same. Thus, for any circulant matrix Ai, the n-dimensional vector Ai · 1 mod p can
be only one of p distinct vectors. There are 2m ways to set each vector x1, . . . ,xm to be either 0 or
1, but there are only p distinct values of the compression function Ax = A1x1+ . . .+Amxm mod p.
Because 2m > p (otherwise the function does not compress), some pair of distinct binary vectors
are mapped to the same output. Such a collision can be found in linear time.

LASH Compression Function LASH-x is a family of hash functions that was presented at
the second NIST hash function workshop [3]. Its compression function fH takes an n-bit input



x = x1|x2 where x1,x2 ∈ {0, 1}n/2, and is defined as fH(x) = (x1 ⊕ x2) + Hx mod q, where H is a
“semi-circulant” m× n matrix whose entries are from the group Z256:

H =





a0 an−1 an−2 · · · a1

a1 a0 an−1 a2
... . . .

am−1 am−2 am−3 . . . am




.

The values a0, . . . , an−1 ∈ Z256 are essentially chosen at random (actually, according to a weak
pseudorandom generator).

As discussed in [3], a heuristic assumption for the security of LASH is that its compression
function fH is collision-resistant. However, for a random choice of the entries a0, . . . , an−1, finding
a collision in fH with noticeable probability is actually trivial. Notice that all the rows of the matrix
H have the same sum. If this sum happens to be 0 mod 256 (which happens with probability 1/256
over the choice of the ai), then we have

f(0) = 0 + H · 0 = 0 = 0 + H · 1 = f(1),

where 0 and 1 are all-0s and all-1s vectors, respectively. Therefore these two distinct inputs make
up a collision in the compression function.

When n is divisible by a large power of 2 (e.g., n = 640, 1024 are proposed in [3]), other
collisions may be easy to find as well (with some noticeable probability over the choice of the ai).
For example, the inputs x = 0101 · · · 01 and x′ = 1010 · · · 10 will collide with probability 1/256,
because Hx and Hx′ consist of two repeated values, i.e., the sum of the even-indexed ais and the
sum of the odd-indexed ais. Other kinds of collisions are also possible, corresponding essentially to
the factorization of the polynomial αn − 1 over Z[α].

The attacks described above apply only to LASH’s underlying compression function, and not (as
far as we are aware) to the full LASH hash function itself. Using different ideas (that do not exploit
the above-described structural weakness in fH), Contini et al [8] give a thorough cryptanalysis of
the full LASH hash function.
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