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Abstract. In this article we find collisions for step-reduced SHA-256.
We develop a differential that holds with high probability if the mes-
sage satisfies certain conditions. We solve the equations that arise from
the conditions. Due to the carefully chosen differential and word differ-
ences, the message expansion of SHA-256 has little effect on spreading
the differences in the words. This helps us to find full collision for 21-step
reduced SHA-256, semi-free start collision, i.e. collision for a different ini-
tial value, for 23-step reduced SHA-256, and semi-free start near collision
(with only 15 bit difference out of 256 bits) for 25-step reduced SHA-256.

1 Introduction

The SHA-2 family of hash functions was introduced to the cryptographic commu-
nity as a new, more complex, and hopefully, more secure variant of MD4-family
of hash functions. The recent results on the widely used MD4-family hash func-
tions SHA-1 and MD5 [6],[7] show flaws in the security of these functions, with
respect to collision attacks. The question arises, if the most complex member of
MD4-family, the SHA-2 family, is also vulnerable to collision attacks.

Known Results for the SHA-2 Family. Research has been made on finding
a local collisions for the SHA-2 family. Gilbert and Handschuh [2] reported a 9-
step local collision with probability of the differential path of 2−66. Later, Mendel
et al [4] estimated the probability of this local collision to be 2−39. Somitra and
Palash obtained a local collision with probability 2−42. Using modular differences
Hawkes, Paddon and Rose [3] were able to find a local collision with probability
2−39. As far as we know, the only work on finding a real collision for SHA-2 was
made by Mendel et al[4]. They studied message expansion of the SHA-256 and
reported a 19-step near collision.

Our contributions. We find a 9-step differential that holds with probability
of 1

3 by fixing some of the intermediate values and solving the equations that
arise. We show that it is not necessary to introduce differences in message words
on each step of the differential. This helps us to overcome the message expan-
sion. We use modular substraction differences. Using only one instance of this
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differential we find 20 and 21-step collisions (collisions for the original initial
value) with probabilities 1

3 and 2−19 respectively. Also, using slightly different
differential we were able to find a 23-step semi-free start collision (collisions for a
specific initial value) with probability 2−21. Our final result is a 25-step semi-free
start near collision with Hamming distance of 15 bits and probability 2−34.

Let H(M, h0) be a hash function, where M is the input message, and h0 is
the initial chaining value. The following attacks are considered in the paper:
Collision attack : Find messages M1 and M2 such that M1 != M2 and H(M1, h0) =
H(M2, h0).
Semi-free start collision attack : Find messages M1,M2 and hash value h∗0 such
that M1 != M2 and H(M1, h∗0) = H(M2, h∗0).
Near collision attack : Find messages M1 and M2 such that M1 != M2 and Ham-
ming distance between H(M1, h0) and H(M2, h0) is small compared to the out-
put size n of the hash function.

2 Description of SHA-2

SHA-2 family consists of iterative hash functions SHA-224, SHA-256, SHA-384,
and SHA-512. For our purposes, we will describe only SHA-256. The definitions
of the rest of the functions can be found in [1]. The SHA-256 takes a message of
length less than 264 and produces a 256-bit hash value. First, the input message
is padded so the length becomes a multiple of 512, and afterwards each 512-
bit message block is processed as an input in the Damgard-Merkle iterative
structure. Each iteration calls a compression function which takes for an input
a 256-bit chaining value and a 512-bit message block and produces an output
256-bit chaining value. The output chaining value of the previous iteration is
an input chaining value for the following iteration. The initial chaining value,
i.e. the value for the first iteration, is fixed, and the chaining value produced
after the last message block is proceeded is the hash value of the whole message.
Internal state of SHA-256 compression function consists of 8 32-bit variables A,
B, C, D, E, F, G, and H, each of which is updated on every of the 64 steps.
These variables are updated according to the following equations:

Ai+1 = Σ0(Ai) + Maj(Ai, Bi, Ci) + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Ki + Wi

Bi+1 = Ai

Ci+1 = Bi

Di+1 = Ci

Ei+1 = Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Ki + Wi + Di

Fi+1 = Ei

Gi+1 = Fi

Hi+1 = Gi



The Maj(X, Y, Z) and Ch(X, Y, Z) are bitwise boolean functions defined as:

Ch(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
Maj(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)

For SHA-256 Σ0(X) and Σ1(X) are defined as:

Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X)
Σ1(X) = ROTR6(X)⊕ROTR11(X)⊕ROTR25(X)

State update function uses constants Ki, which are different for every step. The
512-bit message block itself is divided in 16 32-bit bit words: m0,m1, . . . ,m16.
Afterwards, the message block is expanded to 64 32-bit words according to the
following rule:

Wi =

{
mi, 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16, i > 15

For SHA-256 σ0(X) and σ1(X) are defined as:

σ0(X) = ROTR7(X)⊕ROTR18(X)⊕ SHR3(X)
σ1(X) = ROTR17(X)⊕ROTR19(X)⊕ SHR10(X)

The compression function after the 64-th step adds the initial values to the
chaining variables, i.e. the hash result of the compression function is:

h(M) = (A64+A0, B64+B0, C64+C0, D64+D0, E64+E0, F64+F0, G64+G0,H64+H0).

These values become the initial chaining value for the next compression function.

3 Technique for Creating Collisions

Differences used in this paper are subtractions mod 232 differences.
We use the following notation:

∆Xi = X
′

i −Xi, X ∈ {A, B,D, D,E, F, G, H, W,m},
∆Maji(∆a,∆ b,∆c ) = Maj(Ai + ∆a, Bi + ∆b,Ci + ∆c)−Maj(Ai, Bi, Ci),

∆Chi(∆e,∆f,∆g ) = Ch(Ei + ∆e,Fi + ∆f, Gi + ∆g)− Ch(Ei, Fi, Gi).

∆Σ0(Ai) = Σ0(A
′

i)−Σ0(Ai)

∆Σ1(Ei) = Σ1(E
′

i)−Σ1(Ei)

∆σ0(mi) = σ0(m
′

i)− σ0(mi)

∆σ1(mi) = σ1(m
′

i)− σ1(mi)

We introduce perturbation on step i and in the following 8 steps we try to cor-
rect the differences in the internal variables. We use the following differential:



Table 1. A 9 step differential for SHA-2 family. Notice that only 5 differences
are introduced, i.e. in steps i, i + 1, i + 2, i + 3, and i + 8.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆W
i 0 0 0 0 0 0 0 0 1

i+1 1 0 0 0 1 0 0 0 δ1

i+2 0 1 0 0 -1 1 0 0 δ2

i+3 0 0 1 0 0 -1 1 0 δ3

i+4 0 0 0 1 0 0 -1 1 0
i+5 0 0 0 0 1 0 0 -1 0
i+6 0 0 0 0 0 1 0 0 0
i+7 0 0 0 0 0 0 1 0 0
i+8 0 0 0 0 0 0 0 1 δ4

i+9 0 0 0 0 0 0 0 0 0

As you can see from the table (column ∆W ), only the perturbation has been
fixed. All the other differences are to be determined.

3.1 Conditions for the Local Collision

From the definition of SHA-2, focusing on registers Ai+1 and Ei+1, we get:

∆Ai+1 −∆Ei+1 = ∆Σ0(Ai) + ∆Maji(∆Ai,∆B i,∆C i)−∆Di,

∆Ei+1 = ∆Σ1(Ei) + ∆Chi(∆Ei,∆F i,∆G i) + ∆Hi + ∆Di + ∆Wi.

We will keep in mind that if ∆Ai = ∆Bi = ∆Ci = 0 then ∆Maji(0, 0, 0) = 0.
Also if ∆Ei = ∆Fi = ∆Gi = 0 then ∆Chi(0, 0, 0) = 0.

We fix the differences for the registers A and E (as shown in the table). The
variables B, C, D, F, G,H can only inherit the values from A and E. So, for each
step we get some equations with respect to δi and Ai or Ei.

Step i+1. We have that ∆Di = 0, ∆Hi = 0, ∆Σ0(Ai) = 0, ∆Σ1(Ei) = 0.
We require ∆Ai+1 = 1, ∆Ei+1 = 1. So we deduce:

∆Wi = 1 (1)

Step i+2. We have that ∆Di+1 = 0, ∆Hi+1 = 0. We require ∆Ai+2 = 0,
∆Ei+2 = −1. We want also ∆Σ0(Ai+1) = 1 to be satisfied. So we deduce:

∆Maji+1(1, 0, 0) = 0, (2)

∆Wi+1 = −1−∆Chi+1(1, 0, 0)−∆Σ1(Ei+1). (3)
∆Σ0(Ai+1) = 1 (4)



Step i+3. We have that ∆Di+2 = 0, ∆Hi+2 = 0, ∆Σ0(Ai+2) = 0. We require
∆Ai+3 = 0, ∆Ei+3 = 0. So we deduce:

∆Maji+2(0, 1, 0) = 0, (5)

∆Wi+2 = −∆Σ1(Ei+2)−∆Chi+2(−1, 1, 0). (6)

Step i+4. We have that ∆Di+3 = 0, ∆Hi+3 = 0, ∆Σ0(Ai+3) = 0, ∆Σ1(Ei+3) =
0. We require ∆Ai+4 = 0, ∆Ei+4 = 0. So we deduce:

∆Maji+3(0, 0, 1) = 0, (7)

∆Wi+3 = −∆Chi+3(0,−1, 1). (8)

Step i+5. We have that ∆Di+4 = 1, ∆Hi+4 = 1, ∆Σ0(Ai+4) = 0, ∆Σ1(Ei+4) =
0. We require ∆Ai+5 = 0, ∆Ei+5 = 1. So we deduce:

∆Chi+4(0, 0,−1) = −1. (9)

Step i+6. We have that ∆Di+5 = 0, ∆Hi+5 = −1, ∆Σ0(Ai+5) = 0. We require
∆Ai+6 = 0, ∆Ei+6 = 0. We want also ∆Σ0(Ei+5) = 1 to be satisfied. So we
deduce:

∆Chi+5(1, 0, 0) = 0. (10)
∆Σ1(Ei+5) = 1 (11)

Step i+7. We have that ∆Di+6 = 0, ∆Hi+6 = 0, ∆Σ0(Ai+6) = 0, ∆Σ1(Ei+6) =
0. We require ∆Ai+7 = 0, ∆Ei+7 = 0. So we deduce:

∆Chi+6(0, 1, 0) = 0. (12)

Step i+8. We have that ∆Di+7 = 0, ∆Hi+7 = 0, ∆Σ0(Ai+7) = 0, ∆Σ1(Ei+7) =
0. We require ∆Ai+8 = 0, ∆Ei+8 = 0. So we deduce:

∆Chi+7(0, 0, 1) = 0. (13)

Step i+9. We have that ∆Di+8 = 0, ∆Hi+8 = 1, ∆Σ0(Ai+8) = 0, ∆Σ1(Ei+8) =
0. We require ∆Ai+9 = 0, ∆Ei+9 = 0. So we deduce:

∆Wi+8 = −1. (14)

3.2 Solution of the System of Equations

Lets first observe (4) and (11). From the differential we can see that ∆Ai+1 =
∆Ei+5 = 1. It means that we want the functions ∆Σ0(Ai+1),∆Σ 1(Ei+5) to
preserve the difference 1, in other words:

Σ0(Ai+1 + 1)−Σ0(Ai+1) = 1,

Σ1(Ei+5 + 1)−Σ1(Ei+5) = 1.



The only solution to these equations is Ai+1 = Ei+5 = −1, so we get:

Ai+1 = −1, A
′

i+1 = 0, (15)

Ei+5 = −1, E
′

i+5 = 0. (16)

Now lets consider the function ∆Maji = Maj(A
′

i, B
′

i , C
′

i) − Maj(Ai, Bi, Ci).
Lets suppose that B

′

i = Bi, C
′

i = Ci and Ai and A
′

i differ in every single bit, i.e.
Ai ⊕A

′

i =0xffffffff. Then:

∆Maji = 0 ⇔ Bi = Ci

Therefore (2) gives us Bi+1 = Ci+1, which is Ai = Ai−1. With the same reasoning
we can deduce from (5) that Ai+2 = Ai, and from (7) that Ai+3 = Ai+2. So,
from (2),(5) and (7) we get that

Ai−1 = Ai = Ai+2 = Ai+3 (17)

Similarly to what we have done with Maj, now lets consider ∆Chi and suppose
that F

′

i = Fi, G
′

i = Gi and Ei and E
′

i differ in every single bit. Then:

∆Chi = 0 ⇔ Fi = Gi

Therefore (10) and the result (16) gives us Fi+5 = Gi+5, which is:

Ei+4 = Ei+3 (18)

Solving (12) requires slightly different reasoning; if we have Ei+6 = E
′

i+6, Gi+6 =
G

′

i+6 and Fi+6 and F
′

i+6 would differ in every bit (and they do, see (16)) then :

∆Chi+6 = 0 ⇔ Ei+6 = 0. (19)

Analogously, from (13) we get:

Ei+7 = −1 (20)

The only remaining condition is (9):

∆Chi+4 = Ch(Ei+4, Fi+4, G
′

i+4)−Ch(Ei+4, Fi+4, Gi+4) = −1, G
′

i+4−Gi+4 = −1.

The words Ei+4, Fi+4, Gi+4 are already determined to satisfy the previous con-
ditions. So, we don’t have any degrees of freedom left to control precisely the
solution of this equation. Therefore we will try to find the probability that this
condition holds. We can see that it holds if and only if register Ei+4 has 0’s in
the bits where G

′

i+4 and Gi+4 are different. The G
′

i+4 and Gi+4 can differ in the
last i bits, where 1 ≤ i ≤ 32., and these bits are uniquely determined. So, for
the probability we get:

i=32∑

i=1

P{Last i bits of Ei+4 are zero}× P{Difference in the exactly i last bits} =



=
i=32∑

i=1

1
2i

1
2i
≈ 1

3
.

So, the overall probability of our differential is 1
3 = 2−1.58.

The differences in message words of the differential as in Table 1 are the following:

δ1 = −1−∆Chi+1(1, 0, 0)−∆Σ1(Ei+1),

δ2 = −∆Σ1(Ei+2)−∆Chi+2(−1, 1, 0),

δ3 = −∆Chi+3(0,−1, 1)
δ4 = −1

Notice that the condition (17) shows us that Ai=Bi has to hold.

4 Full, Semi-free and Near Collisions for Step-reduced
SHA-256

Our attack technique is the following:
1. Introduce perturbation at step i;
2. Correct the differences in the following 8 steps (probability of success is the
probability of our differential, i.e. 1

3 ). After the last step of the differential, the
differences in the internal variables are zero;
3. All the the message words that follow the last step of the differential have to
have zero differences;

4.1 20-Step Collision

From the Table 3 of Appendix A we can see that the words m5,m6,m7,m8, and
m13 are used only once in the first 20 steps of SHA-2, i.e. i.e. they are not used
to compute the values of expanded words W16,W17,W18, and W19. This means
that message expansion doesn’t introduce any difference after the last step of
the differential. So, we get collision for 20 step reduced SHA-2, and the collisions
can be found practically by hand. The probability of collision is 2−1.58.

4.2 21-Step Collision

From the Table 3 of Appendix A we can easily see that we have to consider
message expansion since there are no message words that are used only once in
the first 21 steps and that have the proper indexes for the differential.
We will introduce differences in the words m6,m7,m8,m9, and m14. The words
m6,m7,m8 are used only once in the first 21 steps. Therefore the message expan-
sion in the first 21 steps is irrelevant with respect to these words, i.e. differences
in these words don’t introduce any other new differences, after the last step of
the differential(step 14). Now, we want to find words m9,m

′

9,m14, m
′

14 such that
after the 14-th step, the message expansion will not introduce any difference in



the following steps. From the Table 3 of Appendix A we can see that the words
m9 and m14 are used in W16,W18, and W20. So, from the definition of Wi we
get the equations:

∆W16 = ∆σ1(m14) + ∆m9 + ∆σ0(m1) + ∆m0 = 0 (21)
∆W17 = ∆σ1(m15) + ∆m10 + ∆σ0(m2) + ∆m1 = 0 (22)
∆W18 = ∆σ1(W16) + ∆m11 + ∆σ0(m3) + ∆m2 = 0 (23)
∆W19 = ∆σ1(W17) + ∆m12 + ∆σ0(m4) + ∆m3 = 0 (24)
∆W20 = ∆σ1(W18) + ∆m13 + ∆σ0(m5) + ∆m4 = 0 (25)

Obviously if m
′

i = mi (W
′

i = Wi) then ∆σ0(mi) = 0 (∆σ0(Wi) = 0). This
means that ∆W17 = ∆W19 = 0. If we can make so that ∆W16 = 0 then ∆W18 =
∆W20 = 0. So, we get the equation:

∆σ1(m14) + ∆m9 = 0 (26)

Considering that ∆m14 = δ4 = −1, and m9 can take any value, our experimental
results (Monte Carlo method with 232 trials) give us a probability of 2−17.5 that
∆m14 and ∆m9 satisfy this equation. Therefore, the overall probability of 21
step collision is around 2−19.

4.3 23-Step Semi-free Start Collision

For 23 step collision we introduce differences in the words m9,m10, m11, and
m12.
If we would follow our differential, we are supposed to introduce difference in
the message word W17. We can not control W17 directly because it is an ex-
panded word. From the condition W17 = δ4 = −1 (differential) and the message
expansion, we get:

∆W17 = ∆σ1(m15) + ∆m10 + ∆σ0(m2) + ∆m1 = −1.

Since ∆m15 = ∆m2 = ∆m1 = 0, we get:

∆m10 = −1. (27)

In our original differential there are no message differences in the word W16. But
for W16 we have:

∆W16 = ∆σ1(m14) + ∆m9 + ∆σ0(m1) + ∆m0.

Obviously only ∆m9 != 0 and therefore ∆W16 = ∆m9 = 1 != 0. Therefore we
shall use slightly different differential:one were there is a difference in the word
W16. To keep everything else unchanged, the equations for the step 17 become
the following:

∆E17 = ∆Σ1(E16) + ∆Ch16(0, 0, 1) + ∆D16 + ∆H16 + ∆W16.



From the differential we can see that: ∆E17 = ∆Σ1(E16) = ∆D16 = ∆H16 = 0.
Therefore we get:

∆Ch16(0, 0, 1) + ∆W16 = 0. (28)

Now, lets observe the other words of the message expansion.
For W18 we have:

W18 = ∆σ1(W16) + ∆m11 + ∆σ0(m3) + ∆m2 = 0

Since ∆m3 = ∆m2 = 0,∆W 16 = 1 we get the equation:

∆σ1(W16) + ∆m11 = 0. (29)

For W19 we have:

W19 = ∆σ1(W17) + ∆m12 + ∆σ0(m4) + ∆m3 = 0

Since ∆m4 = ∆m3 = 0,∆W 17 = −1 we get the equation:

∆σ1(W17) + ∆m12 = 0. (30)

For W20 we have:

W20 = ∆σ1(W18) + ∆m13 + ∆σ0(m5) + ∆m4 = 0

Since ∆W18 = ∆m13 = ∆m5 = ∆m4 = 0 we get that this equation is satisfied
for all values of W18,m13,m5,m4.
For W21 we have:

W21 = ∆σ1(W19) + ∆m14 + ∆σ0(m6) + ∆m5 = 0

Since ∆W19 = ∆m14 = ∆m6 = ∆m5 = 0 we get that this equation is satisfied
for all values of W19,m14,m6,m5.
For W22 we have:

W22 = ∆σ1(W20) + ∆m15 + ∆σ0(m7) + ∆m6 = 0

Since ∆W20 = ∆m15 = ∆m7 = ∆m6 = 0 we get that this equation is satisfied
for all values of W20,m15,m7,m6.
For W23 we have:

W23 = ∆σ1(W21) + ∆W16 + ∆σ0(m8) + ∆m7 = 0

Since ∆W21 = ∆m8 = ∆m7 and ∆W16 != 0 we get that this equation has no
solution. That is why we can not get more than 23 step collision.

Lets try to solve (27), (28), (29) and (30).
For (27) and the value of the register E11 from the differential’s conditions we
have:

∆E11 = ∆Σ1(E10)) + ∆Ch10(1, 0, 0) + ∆m10.



Since ∆E11 = m10 = −1 we get:

∆Σ1(E10) + ∆Ch10(1, 0, 0) = 0.

We solve this equation by setting ∆Σ1(E10) = 1 and ∆Ch10(1, 0, 0) = −1. The
first one has solution:

E10 = −1, E
′

10 = 0. (31)

The second equation holds for the values:

F10 = G10 + 1. (32)

Now lets turn to the solution of (28). Using the fact that G16 = −1 and G
′

16 = 0,
we get that this equation is satisfied if:

E16 = 0xfffffffe (33)

Lets observe the equation (30). From the conditions of the differential we have:

∆E13 = ∆Σ1(E12) + ∆Ch12(0,−1, 1) + ∆H12 + ∆D12 + ∆m12

Since ∆E13 = ∆E12 = ∆H12 = ∆D12 = 0 we get:

∆Ch12(0,−1, 1) + ∆m12 = 0.

If we substitute m12 from (30) we can get:

∆Ch12(0,−1, 1) = ∆σ1(−1).

This equation can be satisfied if we can control E12 and F12.
For E12, from the definition of A12 and E12 we have:

A12 − E12 = Σ1(A11) + Ch(A11, B11, C11)−D11

Considering that A12 = A11 = C11 = D11 from the differential’s conditions, we
get:

E12 = A9 −Σ1(A9)

Since A9 can take any value (we consider semi-free start collision) we deduce
that E12 can take any value.
The F12 value, which is E11 can be controlled through H10. Notice that changing
H10, which is G9, doesn’t effect E10, because from (31) we can see that E10 always
takes the arranged value.
We proved that we can fully control E12 and F12. We can choose some specific
value for ∆σ1(−1) which is possible to get from ∆Ch12(0,−1, 1), and set the A9

and G9 so that the equation (30) will hold.
The last equation, i.e. (29), is satisfied for some specific values of W16 and m11.
Our experimental results show that with probability 2−19.5 W16 and m11 satisfy
(29). Therefore the overall probability for 23 step semi-free start near collision
is around 2−21.



4.4 25-Steps Semi-free Start Near Collision

Lets suppose we have a semi-free start collision on the 23-rd step. Each following
step introduces differences in the chaining variables A and E. The variables
B, C, D, F, G,H can only inherit differences from A and E. Therefore, for each
step, we should try to minimize the differences in A and E. When we say to
minimize the differences we mean to minimize the Hamming distances between
A

′
and A, and between E

′
and E.

Step 24.

min
W

′
23−W23=1

hd(E
′

24, E24) = min
W

′
23−W23=1

hd(C1 + 1, C1) = 1,

where C1 = Σ1(E23) + Ch(E23, F23, G23) + H23 + D23 + K23 + W23.

min
W

′
23−W23=1

hd(A
′

24, A24) = min
W

′
23−W23=1

hd(C2 + 1, C2) = 1,

where C2 = Σ0(A23)+Maj(A23, B23, C23)+Σ1(E23)+Ch(E23, F23, G23)+H23+
K23 + W23.
We have the minimal Hamming distances when C32

1 = C32
2 = 0, which means

with probability 2−2.

Step 25.
min

W
′
24−W24=−1+∆σ0(1)

hd(E
′

25, E25) =

= min hd(Σ1(E
′

24)+Ch(E
′

24, F24, G24)−1+σ0(m9+1)+C1, Σ1(E24)+Ch(E24, F24, G24)+σ0(m9)+C1),

where C1 = H24+D24+K24+σ1(W22)+m8. If F 32
24 = 1 and G32

24 = 0 (probability
2−2) then, considering that E

′32
24 = 1, E32

24 = 0, we have Ch(E
′

24, F24, G24)− 1 =
Ch(E24, F24, G24), and we can rewrite the last expression as:

minhd(Σ1(E
′

24) + σ0(m9 + 1) + C2, Σ1(E24) + σ0(m9) + C2),

where C2 = C1 + Ch(E24, F24, G24).
If no carry occurs due to the differences, then the above minimum is:

minhd(Σ1(E
′

24) + σ0(m9 + 1) + C2, Σ1(E24) + σ0(m9) + C2) = 5.

For Σ1(E
′

24) (difference in three bits) there are no carries with probability 2−3.
For σ0(m9 + 1) (two differences if m32

9 = 0) with probability 2−3. Therefore the
minimum is 5 with probability 2−8.
Using the same methods we can get:

min
W

′
24−W24=−1+∆σ0(1)

hd(A
′

25, A25) = 8,

with probability 2−11. Notice that if minimum holds for A25 then it holds for
E25.



So, for the whole hash value, we have:

hd((A
′

25, B
′

25, C
′

25, D
′

25, E
′

25, F
′

25, G
′

25,H
′

25)), (A25, B25, C25, D25, E25, F25, G25,H25)) =

= hd((A
′

25, A
′

24, C25, D25, E
′

25, E
′

24, G25, H25), (A25, A24, C25, D25, E25, E24, G25,H25)) =

= hd(A
′

25, A25) + hd(E
′

25, E25) + hd(A
′

24, A24) + hd(E
′

24, E24) =
= 8 + 5 + 1 + 1 = 15

Therefore we get a 25-step semi-free start near collision with the Hamming weight
of 15 bits and probability 2−34. Notice that we haven’t investigated all the possi-
ble outcomes of the carry effects. Therefore, it is possible that the real probability
is higher.

Table 2. Collision search attacks for SHA-256.

# of steps Type of collision Complexity(*) Paper

19 Near collision (**) [4]
20 Collision 21.58 This paper
21 Collision 219 This paper
22 Pseudo-collision (**) [4]
23 Semi-free start collision 221 This paper
25 Semi-free start near collision 234 This paper

(*) Complexity is measured in reduced SHA-256 calls
(**) Complexity not mentioned in the paper

5 Conclusion

We created a 9-step differential for SHA-256 that holds with high probability.
Using the characteristics of this differential, precisely, the fact that not all of the
input message words have differences, we were able to overcome the beginning
steps of the message expansion. We created a full collisions for 20 and 21-step
reduced SHA-256. Also, we found a 23-step reduced semi-free start collision, and
25-step reduced near collision with Hamming distance of 17 out of 256 bits. The
complexities of these collisions search attacks are showed in Table 2. Obviously,
our results hold for SHA-224 too. For SHA-384 and SHA-512 different equations
arise. We have not analyzed them, but our guess is that complexities of the
attacks should stay the same.
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A Message Expansion

Table 3. Message expansion of SHA-2. There is ’x’ in the intersection of row
with index i and column with index j if Wi uses mj .

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 x
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x
10 x
11 x
12 x
13 x
14 x
15 x
16 x x x x
17 x x x x
18 x x x x x x x
19 x x x x x x x
20 x x x x x x x x x x
21 x x x x x x x x x x
22 x x x x x x x x x x x x x



B Conditions for collision

Table 4. The differences propagation for 20, 21, and 23-step collisions for SHA-
256. Notice that for each collision initial difference is introduced in different steps
(steps 5,6,9 respectively).

20 21 23 ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆W
step step step
5 6 9 0 0 0 0 0 0 0 0 1
6 7 10 1 0 0 0 1 0 0 0 δ1

7 8 11 0 1 0 0 -1 1 0 0 δ2

8 9 12 0 0 1 0 0 -1 1 0 δ3

9 10 13 0 0 0 1 0 0 -1 1 0
10 11 14 0 0 0 0 1 0 0 -1 0
11 12 15 0 0 0 0 0 1 0 0 0
12 13 16 0 0 0 0 0 0 1 0 δ5

13 14 17 0 0 0 0 0 0 0 1 −1
14 15 18 0 0 0 0 0 0 0 0 0

Table 5. The values of the word differences in 20, 21, and 23-step collisions for
SHA-256. Notice that 23-step semi-free start collision has a word difference in
δ5. That is why its collision path is slightly different than the one used for 20
and 21-step collision.

δ1 δ2 δ3 δ5

20-step −1−∆Ch6(1, 0, 0)−∆Σ1(E6) −∆Σ1(E7)−∆Ch7(−1, 1, 0) −∆Ch8(0,−1, 1) 0
21-step −1−∆Ch7(1, 0, 0)−∆Σ1(E7) −∆Σ1(E8)−∆Ch8(−1, 1, 0) −∆Ch9(0,−1, 1) 0
23-step −1 −∆Σ1(E11)−∆Ch11(−1, 1, 0) −∆Ch12(0,−1, 1) 1

Table 6. The additional conditions that have to hold in order to get a 20, 21,
and 23-step collisions for SHA-256.

20-step A4 = A5 = A7 = A8 E9 = E8, E10 = −1, E
′

10 = 0 ∆Ch9(0, 0,−1) = −1
A6 = −1, A

′

6 = 0 E11 = 0, E12 = −1
21-step A5 = A6 = A8 = A9 E10 = E9, E11 = −1, E

′

11 = 0 ∆Ch10(0, 0,−1) = −1
A7 = −1, A

′

7 = 0 E12 = 0, E13 = −1 ∆σ1(−1) + δ3 = 0
23-step A8 = A6 = A9 = A10 E13 = E12, E14 = −1, E

′

14 = 0 ∆Ch13(0, 0,−1) = −1
A10 = −1, A

′

10 = 0 E15 = 0, E16 =0xfffffffe ∆σ1(−1) + δ3 = 0
E9 = E8 + 1, E10 = −1, E

′

10 = 0 ∆σ1(1) + δ2 = 0



C Collision Examples

Table 7. A 21-step collision for SHA-256.

M0 0004024f 00000000 00000000 00000000 00000000 2c51fd8d b83daf3c bc852709
ae18a3e7 1d11dbc7 21d06175 ab551b5f a48e9a8b 00000000 19000000 00000000

M
′

0 0004024f 00000000 00000000 00000000 00000000 2c51fd8d b83daf3d 7c652ab7
b238a344 1d11dac8 21d06175 ab551b5f a48e9a8b 00000000 18ffffff 00000000

H 73f5fcd2 682f578e 8d9c3d05 f93ad865 662b0636 a5a5d4c2 32091775 04ac6dae

Table 8. A 23-step semi-free start collision for SHA-256.

H0 b55ba47f 07c613d8 16b57ad9 08973f4f f8b202dd 60c5e5f0 0158a481 81c4869f
M0 7aa56a94 e6bf138c 00000000 00000000 00000000 00000000 00000000 00000000

00000000 a385a0eb dbcdde48 26e523f5 34e27eba 97406f01 f3656653 cdc5da00
M

′

0 7aa56a94 e6bf138c 00000000 00000000 00000000 00000000 00000000 00000000
00000000 a385a0ec dbcdde47 22e583f0 34e27dbb 97406f01 f3656653 cdc5da00

H f7d754c8 0d46636c 65b4e12b 9bd42ca1 71f1e5ec a8dc20f8 95a46b6d f94cbfef

Table 9. A 25-step semi-free start near collision with Hamming distance of 17
bits for SHA-256.

H0 8e204f9e bca27aea 42da63d7 00f2f219 fd1db715 6389ae13 c6f57538 de4e655c
M0 c63714eb 13d5fa9c 00000000 00000000 00000000 00000000 00000000 00000000

00000000 d51b4dba aeb6f738 61dce9b7 0ab5c01a 83406f01 df65666b cdc5da00
M

′

0 c63714eb 13d5fa9c 00000000 00000000 00000000 00000000 00000000 00000000
00000000 d51b4dbb aeb6f737 71dd499a 0ab5bf1b 83406f01 df65666b cdc5da00

H 2e2fcb73 8192d3a4 f85b5a7d 801c4583 9307e51c cf57fb61 11c48b0d 7131ccd2
H

′
6c478ef3 8192d3a5 f85b5a7d 801c4583 9127a49c cf57fb62 11c48b0d 7131ccd2


