
Bad and Good Ways

of Post-Processing

Biased Random Numbers

Markus Dichtl
Siemens AG

Corporate Technology



Overview

This talk comes in two parts:

• A bad way
• Good ways



Why Post-Processing?

Observation: All physical random 
numbers seem to deviate from the 
statistical ideal.

Post-processing is used to remove or 
reduce these deviations from the ideal.



The Most Frequent Statistical Problem

Bias:  A deviation of the probability of  1-bits 
from the ideal value ½. 
For statistically independent bits with
probability p of 1-bits:

Bias ε = p – 1/2



The Bad Scheme

TRNG

Bijective, 
easily

invertible
quasigroup

transformation

Output

In their FSE 2005 paper,  “Unbiased Random 
Sequences from Quasigroup String 
Transformations”, Markovski, Gligoroski, and 
Kocarev suggested this scheme  for TRNG post-
processing.



What is a Quasigroup? (I)

A quasigroup is a set Q with a mapping *
Q × Q → Q such that all equations of the
form
a * x = b  and  y * a = b
are uniquely solvable for x and y for all a 
and b 



What is a Quasigroup? (II)

A function is a 
quasigroup iff its
function table is a 
latin square.

12303

03212

21031

30120

3210*



The e-Transformation

The e-transformation maps a string a1a2…an
and a „leader“ b0 (bo * bo ≠ bo) to the string
b1b2…bn  by

bi = bi-1 * ai for i = 1, …, n

a1 a3a2

b0

*
b1

*
b2 b3

*



The E-Algorithm

E-algorithm : k-fold application of the e-transformation
(fixed leader and quasigroup)

According to the recommendations of the original 
paper for highly biased input, we choose k=128 for a 
quasigroup of order 4.



The Good News about the Bad Scheme

As the quasigroup mapping is bijective, it  can do no 
harm. 

The entropy of the output is just the entropy of the 
input.



The HB TRNG
The authors of the quasigroup post-processing paper 
claim that it is suitable for highly biased input like 
99.9 % 0-bits
0.1 % 1-bits     (bias -0.499)

We call this generator HB (for High Bias)



Attack
We attack HB post-processed with the E-Algorithm based on a 
quasigroup of order 4 and k=128. 

As almost all inputs bits are 0, we guess them to be 0 and 
determine the output by applying the E-Algorithm.

The probability to guess two bits  correctly is 0.998001

If we guess wrongly, we use the inverse E-Algorithm to 
determine the correct input for continuing the attack.



Attack with Quasigroup Unknown
It does not help too much to keep quasigroup and 
leader secret, as there are only 1728 choices of 
quasigroups of order 4 and leader.

Simplified attack suggested by an anonymous 
reviewer: 
Apply the inverse E-algorithms for the 1728 choices, 
the correct one is identified by many 0-bits in the 
output.



What is Going on in the E-Algorithm?
Bias is replaced with  dependency, and this is 
achieved very slowly



And now for something quite different

One anonymous FSE 2007 reviewer: 
The paper needs to be much more up-front about the 
fact that you are demolishing apples while promoting 
the virtues of oranges.

We have to give up the idea of bijective post-
processing (apples) of random numbers and look at 
compressing functions instead (oranges).



Von Neumann Post-Processing

John von Neumann (1951)

00 
01 
10
11

→ 0
→ 1

For statistically independent but biased input: 
perfect balanced and independent output

Problem: Unbounded latency



A Dilemma

Perfect output statistics
and 
bounded latency
exclude each other.



Popular Examples for Bounded Latency Algorithms

XOR

Feeding the RNG-bits into a LFSR, reading
output from the LFSR at a lower rate



Algorithms for Fixed Input/Output Rate 

No perfect solution!
We consider the input/output rate 2.

For single bits: XOR is optimal!

Bias after XOR:  22ε



What we are Looking for

Input: 16 bits
Output: 8 bits

Input is assumed to be statistically 
independent, but biased. We cannot assume 
to know the numerical value of the bias ε.



The Function H

2 Bytes are mapped to 1.



The Function H in C

unsigned char H (unsigned char a, unsigned char b)
{
return ( a^rotateleft(a,1)^b);        /* ^ is XOR in C*/
}



Entropy Comparison:  H and XOR 

2 bytes are mapped to 1 byte.



What about Low Biases?

Probability of 1-bit: 0.51 (Bias 0.01)
Entropy of one output byte with XOR:

7.9999990766751
Entropy of one output byte with H:

7.9999999996305
which is 2499 times closer to 8.



Probabilities of Raw Bytes 



Byte Probabilites for XOR

XXX



Byte Probabilities for H (Part)



Why H is so Good and a New Challenge

That the lowest power of  ε in the probabilties of 
H is ε3 explains why H is better than XOR, which 
has ε2 terms.

Challenge: 
To make disappear  further powers of ε!



The Functions H2 and H3 in C

unsigned char H2(unsigned char a, unsigned char b)
{
return ( a^rotateleft(a,1)^rotateleft(a,2)^b);
}

unsigned char H3(unsigned char a, unsigned char b)
{
return ( a^rotateleft(a,1)^rotateleft(a,2)^ rotateleft(a,4)^ b);
}



Properties of  H2 and H3 

Lowest ε-power in the byte probabilities:

H2:  ε4

H3:  ε5



Going Further

Of course, we also want to get rid of ε5 !

It seems that linear methods cannot 
achieve this. 



What must be done?

We must partition 216 16-bit-values  into 256 sets of  
256 elements each in such a way that in the sums of 
the probabilties of each set the powers ε1 through ε5

cancel out.

The probabilities of the 16-bit-values depend only on 
the Hamming weight w. Hence, there are 17 
possibilities. The different Hamming weights occur with 
different frequencies.



Occurrences and Probabilities  for 16-bit-values



Observation

If we add the probabilty of a 16-bit-tupel and the probability
of ist bitwise complement, then all odd ε-powers cancel out.
So, we add them to our sets only together.

Considerable simplification of the problem



The Simplified Problem



The Solution S
The 256 sets of the solutions S fall into 7 types:

60

2

43

43

36

85

w =7

202442017G

75830134F

155875112E

301637260D

50281446C

42116B

1511211A

w =8w =6w =5w =4w =3w =2w =1w =0#Type



Byte Probabilities of  S



Byte Probabilities of S and XOR



Entropy Comparison of S, H,  and XOR



Negative Results

The ε6-terms cannot be eliminated. (Proved by 
linear programming techniques.)

When considering mappings from 32 to 16 
bits, the probabilities of the output values 
contain 9-th or lower powers of ε.



Conclusion

The quasigroup TRNG post-processing suggested by 
Markovski, Gligoroski, and Kocarev does not work. It is 
based on faulty mathematics.

The fixed input/output rate TRNG post-processing 
functions suggested in this talk are considerably better 
than the previously known algorithms. There are open 
questions concerning the systematic construction of 
such functions. 


