

By: Lim Chu Wee, Khoo Khoong Ming.

History

 (2002) Courtois and Pieprzyk announced a plausible attack (XSL) on Rijndael AES.

□ Complexity of $\approx 2^{225}$ for AES-256.

- Later Murphy and Robshaw proposed embedding AES into BES, with equations over F₂₅₆.
 - □ S-boxes involved fewer monomials, and would provide a speedup for XSL *if it worked* (2⁸⁷ for AES-128 in best case).
 - □ Murphy and Robshaw also believed XSL *would not work*.
- (Asiacrypt 2005) Cid and Leurent showed that "compact XSL" does not crack AES.

Summary of Our Results

- We analysed the application of XSL on BES.
- Concluded: the estimate of 2⁸⁷ was too optimistic; we obtained a complexity ≥ 2⁴⁰¹, even if XSL works. Hence it does not crack BES-128.
- Found further linear dependencies in the expanded equations, upon applying XSL to BES.
 - □ Similar dependencies exist for AES unaccounted for in computations of Courtois and Pieprzyk.
- Open question: does XSL work at all, for some P?

Quick Description of AES & BES

AES Structure

- Very general description of AES (in F₂₅₆):
 - \Box Input: key (k₀k₁...k_{s-1}), message (M₀M₁...M₁₅).

 \Box Suppose we have aux variables: v_0, v_1, \dots

- \Box At each step we can do one of three things:
 - Let v_i be an F₂-linear map T of some previously defined byte: one of the v_i's, k_i's or M_i's.
 - Let $v_i = XOR$ of two bytes.

• Let $v_i = S(\text{some byte})$.

 \Box Here S is given by the map: $x \to x^{-1}$ (S(0)=0).

 \Box Output = 16 consecutive bytes $v_{i-15} \dots v_{i-1} v_i$.

BES Structure

BES writes all equations over F_{256} .

- For each $v \in F_{256}$, we also include its conjugates: □ i.e. v, v², v⁴, v⁸, v¹⁶, v³², v⁶⁴, v¹²⁸ (v²⁵⁶ = v).
- Then an F_2 -linear map y = T(v) can be written as an F_{256} -linear map of v, v^2 , ... v^{128} .

□ Conjugates of y can also be written in this manner.

• S-box has a simple expression: $v_i = v_j^{-1}$.

 \Box For conjugate, $v_i^2 = (v_j^2)^{-1}$.

For XOR, conjugates give $(v_i+v_j)^2 = (v_i^2)+(v_j^2)$.

Summary of XSL on AES / BES (and Notations)

XSL on AES

- Write all equations over F_2 .
- Including key schedule,
 - □ AES-128 has **S=201** S-boxes, **L=1664** linear eqns;
 - \square AES-192 has S=417 S-boxes, L=3520 linear eqns;
 - \square AES-256 has S=501 S-boxes, L=4128 linear eqns.
- If $(y_0y_1...y_7) = S(x_0x_1...x_7)$, then the x_i 's and y_i 's satisfy r=24"bilinear" equations,

 \Box involving *t*=81 monomials: 1, x_i , y_j , x_iy_j .

■ Let P = XSL parameter.

- Form the set Σ_s of **extended S-box** equations as follows:
 - □ Pick 1 *active* S-box, P-1 *passive* S-boxes (all S-boxes distinct).
 - □ Pick an equation from active S-box, one S-box monomial from each passive S-box.
 - \Box Multiply the equation by these P-1 monomials.
- Form the set Σ_L of **extended linear** equations as follows:
 - □ Pick 1 linear equation, P-1 distinct *passive* S-boxes.
 - □ Pick a monomial from each passive S-box.
 - □ Multiply the equation by these P-1 monomials.
- Collect these equations $\Sigma_{\rm S} \cup \Sigma_{\rm L}$.
- Solve the equations via linearisation: replace each monomial with new variable and solve linearly.

- Courtois & Pieprzyk noted some obvious linear dependencies:
 - \square Pick 2 active S-boxes, and S-box equations eqn₁ and eqn₂.
 - \square Pick P-2 passive S-boxes, and S-box monomials $t_3, \dots t_P$.
 - □ Expanding $(eqn_1)(eqn_2)(t_3...t_p)$, we get a linear relation between equations extended from eqn_1 and those from eqn_2 .
- Eliminating these linear dependencies,
 - number of extended S-box equations R = C(S, P) (t^P-(t-r)^P),
 number of extended linear eqns R' = L (t-r)^{P-1} C(S, P-1).
- Note: we have combined R' and R" in Courtois' & Pieprzyk's paper into a single R' here.

- On the other hand, number of monomials $T = t^P C(S,P)$.
- We want more equations than monomials. Hence,
 - □ **AES-128** : min P = 7. This gives R = 4.95 * 10²⁵, R' = 4.85 * 10²⁴ and T = 5.41 * 10²⁵. Complexity of XSL = $T^{2.376} = 2^{203}$.
 - □ **AES-192** : min P = 7. This gives R = 8.65 * 10²⁷, R' = 8.50 * 10²⁶ and T = 9.46 * 10²⁷. Complexity of XSL = $T^{2.376} = 2^{221}$.
 - □ **AES-256** : min P = 7. This gives R = 3.15×10^{28} , R' = 3.02×10^{27} and T = 3.45×10^{28} . Complexity of XSL = $T^{2.376} = 2^{225} < 2^{256}$.
- "T'-method": multiply equations by monomials selectively, without increasing its degree – to get more equations.
 - □ To apply T', need at least 0.994 of needed equations.
- It seemed plausible that XSL can break AES-256 faster than brute force.

XSL on BES

- For each variable v, write v_0, v_1, \dots, v_7 for the conjugates of v.
- Hence, for each S-box y = S(x), we get r=24 equations:
 - $\Box x_i y_i = 1, i=0,1,...,7;$
 - $\Box y_i^2 = y_{i+1}, i=0,1,...,7 (y_8 = y_0);$
 - $\Box x_i^2 = x_{i+1}, i=0,1,...,7 (x_8 = x_0).$
- Monomials appearing: 1, x_i , y_i , x_iy_i , x_i^2 , y_i^2 (t=41).
- If we apply XSL to BES, then all computations hold, with t=81 replaced with t=41. Result: we can use a smaller P.
- E.g. **BES-128**: P=3. This gives $R=8.53 * 10^{10}$, $R' = 9.67 * 10^{9}$ and $T = 9.19 * 10^{10}$. Complexity $= T^{2.376} = 2^{87} < 2^{128}$ (!!).
- Finally, T'-method cannot be applied to BES.

Our Analysis of XSL on BES

Analysing Extended S-box Eqns (I)

In BES, all S-box equations are equalities between:

$$x_i y_i = 1$$
, $x_i^2 = x_{i+1}^2$, $y_i^2 = y_{i+1}^2$.

- Thus, an extended S-box equation is also an equality between two monomials.
- Hence solving them linearly gives equivalence classes of monomials. E.g.
 - □ suppose $(b_i) = S(a_i), (d_i) = S(c_i), (f_i) = S(e_i);$
 - □ $a_2^2 d_4 e_5 f_5 = a_3 d_4 e_5 f_5 = a_3 d_4$, where first equality extended from $a_2^2 = a_3$, second equality from $e_5 f_5 = 1$.
- In each equivalence class, there is a unique monomial of the form v⁽¹⁾v⁽²⁾...v⁽ⁱ⁾, where the v^(j) are variables belonging to different S-boxes. We will call such S-box monomials reduced.

Analysing Extended S-box Eqns (II)

- Number of reduced monomials of degree *i* is: $C(S,i) \ 16^{i}$.
- Hence, after solving the extended S-box equations by linearisation, we get exactly:

$$\sum_{i=0}^{P} C(S,i) 16^{i}$$

linearly independent monomials.

 Prior XSL estimate: after eliminating obvious linear dependencies, we get

$$T - R = (t - r)^{P} C(S, P) = 17^{P} C(S, P)$$

linearly independent monomials, which is a slight overestimate but rather close.

Analysing Extended Linear Eqns

- Extended linear eqns are obtained by multiplying linear equation with S-box monomials.
- By previous 2 slides, suffices to multiply the linear equation by *reduced* S-box monomials.
- Hence, XSL is equivalent to the following:
 - \square (a) Pick set Σ_{S} of extended S-box equations.
 - □ (b) Pick set Σ_L ' of equations which are extended from linear equations by a reduced monomial of degree at most P-1.
 - \square (c) Solve $\Sigma_{\rm S} \cup \Sigma_{\rm L}$ ' via linearisation.
- Question: what if we skip the step (a), i.e. forget all extended S-box equations? How many linearly independent monomials do we get?

Answer (lower bound) to previous slide's question:

- We end up multiplying linear equations by reduced monomials and solving by linearisation.
- Recall the original description of AES, where each byte is defined in terms of previous defined bytes. *Key point: upon removal of the S-boxes, we introduce 8S (totally) free F*₂₅₆ variables (i.e. these 8 variables can take any value).
- Nutshell: by skipping step (a), we introduce 8S totally free variables which we can take to be the input variables.
- The number of linearly independent monomials is hence at *least* number of reduced monomials formed by these 8S variables:
 P

$$D_1 = \sum_{i=0}^{p} C(S, i)8^i$$

- Recall: adding step (a) serves to replace every S-box monomial by a reduced monomial.
- Since an equation in Σ_L' is of the form (eqn)*(reduced monomial), the only useful extended S-box equations are of the form:

 $(v)(\text{monomial}_1) = (\text{monomial}_2),$

- \square where monomial₁ is a reduced monomial of deg \leq P-1,
- \Box v is a variable occuring in monomial₁, or whose dual occurs in monomial₁,
- \square monomial₂ is a reduced monomial,

 $\Gamma(S,i)$ 8

- □ furthermore, we can assume other than the dual/identical pair, all other variables in monomial₁ are input variables,
- □ if $(b_i) = S(a_i)$, $(d_i) = S(c_i)$, $(f_i) = S(e_i)$, then an example would be $(e_2)(a_2c_7f_2) = (a_2c_7)$.

Let us count the number of such useful S-box equations:

$$D_2 = 24S \times \sum_{i=0}^{P-2} C(S-1,i)8^i$$

- For linearisation to work, we must have $D_2 \ge D_1$.
- We get the following values:
 - □ **BES-128** : min P = 23. $D_1 = 5.90 * 10^{50}$, $D_2 = 6.25 * 10^{50}$. Resulting complexity = $D_1^{2.376} = 2^{401}$.
 - □ **BES-192** : min P = 33. $D_1 = 5.86 * 10^{78}$, $D_2 = 6.02 * 10^{78}$. Resulting complexity = $D_1^{2.376} = 2^{622}$.
 - □ **BES-256** : min P = 36. $D_1 = 3.80 * 10^{78}$, $D_2 = 3.85 * 10^{78}$. Resulting complexity = $D_1^{2.376} = 2^{691}$.

Conclusion, XSL does not break BES faster than brute force.

Further Analysis

- Our analysis shows a lot of linear dependencies previously unaccounted for.
- Observation 1 : Original computations assumed that only extended S-box monomials appear.
 - □ Not true. E.g. suppose y = S(x) is an S-box. A linear equation contains x_2 , then this S-box appears as a passive one, with y_5 chosen, then the monomial contains a factor of x_2y_5 which is not from S-box.
 - □ Heuristically, difference not significant.

Observation 2 : "Obvious" linear dependencies among extended linear equations.

- \square E.g. if L₁ and L₂ are linear equations, and v₃,...v_P are monomials from P-2 distinct S-boxes.
- □ Expanding $L_1L_2(v_3...v_p)$ forms a linear dependence between equations extended from L_1 and those from L_2 .
- □ Similar to linear dependencies among extended S-box equations, but were not accounted for.
- □ Likely to be very significant, as demonstrated by those among extended S-box equations.
- Based on these observations, we believe that XSL is unlikely to work on AES over F₂, or on Serpent.

Thank you. Questions?