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Cryptographic Hash Function

H:{0,1}* — {0,1}*
Properties

e Preimage resistance

It is difficult to obtain x such that H(x) = y for given .

e Second preimage resistance
It is difficult to obtain z’ such that H(z') = H(x) for given x.

e (ollision resistance
It is difficult to obtain x, 2’ such that x # 2’ and H(x) = H(2').



lterated Hash Function

e Compression function
F:{0,1} x {0,1}* — {0,1}*

e Initial value hy € {0,1}*

Input m = (mq, Mo, ..., my), m; € {0,1} for 1 <i <1
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Motivation

How to construct a compression function using a smaller component?

E.g.) Double-block-length (DBL) hash function

e [he component is a block cipher.

e output-length = 2 X block-length

e abreast/tandem Davies-Meyer, MDC-2, MDC-4, ...

Cf.) Any single-block-length HF with AES is not secure.

e Output length is 128 bit.

e Complexity of birthday attack is O(2%4).



Result

e Some plausible DBL HFs

— Composed of a smaller compression function

« F(z) = (f(z), f(p(x)))

p is a permutation satisfying some properties

+ Optimally collision-resistant (CR) in the random oracle model

— Composed of a block cipher with key-length > block-length

x AES with 192 /256-bit key-length
x Optimally CR in the ideal cipher model

e A new security notion: Indistinguishability in the iteration

Def. (optimal collision resistance)

Any collision attack is at most as efficient as a birthday attack.



Related Work on Double-Block-Length Hash Function

e Hirose 04

— The compression function F' is composed of two distinct block ciphers

— Optimally CR schemes in the ideal cipher model
o Lucks 05

o F(ga ham) — (f(ga ham)a f(hagam))

— Optimally CR if f is a random oracle

e Nandi 05

— F(x) = (f(x), f(p(x))), where p is a permutation

— Optimally CR schemes if f is a random oracle



Other Related Work

Single block-length

e Preneel, Govaerts and Vandewalle 93

PGV schemes and their informal security analysis

e Black, Rogaway and Shrimpton 02

Provable security of PGV schemes in the ideal cipher model
Double block-length

e Satoh, Haga and Kurosawa 99
Attacks against rate-1 HFs with a (n,2n) block cipher

e Hattori, Hirose and Yoshida 03
No optimally CR rate-1 parallel-type CFs with a (n,2n) block cipher



DBL Hash Function Composed of a Smaller Compression Function

e f is a random oracle

® p Is a permutation

iy
e Both p and p~! are easy

> hz
e popis an identity permutation

F(z) = (f(z), f(p(x)))
F(p(x)) = (f(p(2)), f(x))

f(x) and f(p(x)) is only used for ['(x) and F'(p(x)).

We can assume that an adversary asks = and p(x) to f simultaneously.



Collision Resistance

Th. 1 Let H be a hash function composed of F'(x) = (f(x), f(p(x))).

Suppose that

e p(p(+)) is an identity permutation

e p has no fixed points: p(x) # x for Va

Adv(q) % success prob. of the optimal collision finder for H
which asks ¢ pairs of queries to f.
coll q 2 q .
Then, Adv} (q) < T + o N the random oracle model.

n is the output-length of f.



Proof Sketch

Fis CR= His CR

Two kinds of collisions:

PrF(x) = F(«') | 2" # p(a)]



Collision Resistance: A Better Bound

Th. 2 Let H be a hash function composed of F'.

Suppose that
e p(p(+)) is an identity permutation

e p(g,h,m) = (pev(9, h), Pm(m))

— peyv has no fixed points

B pCV(gvh) # (hag) for \V/<g,h)
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Then, Adv$'(¢) < 3 (i) in the random oracle model.

2n
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Proof Sketch

Two kinds of collisions: w N

() = FE e 400 = () P

=1

\-_-___ —" & \-_-___
Yy /l = Yy

1 .
PI’[F(I‘) = F(gj/) |gj/ — p(gj)] — — jLUl collision

2n :::' ‘\: ‘\ j
However, —- [ FI—

F(z) = F(z') Ao’ = p(x) = F(w') = pe(F(w)) Aw' # p(w)

Pr{F(w) = peF() [0 # (0] = ( 5 )

2 2 2
AdvS(g) < (i) _ (i) 2(1)



Th.1vs. Th.?2

The difference between the upper bounds is significant.

E.g.) A permutation p satisfying the properties in Th. 2

p(gah7m> — (g S> Clah D 627m>7 Where C1 # Co
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DBL Hash Function Composed of a Block Cipher

F =

gz_l H—LV

+$—> 9; C 1S a hon-zero constant.

>T>

such that f =

9,1 e ~<‘> -
u

hi—l my

bod

- h p(g,h,m) =

(g ® c,h,m)
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DBL Hash Function Composed of a Block Cipher

9¢—1+L> € *é-* Y

hi—l

m;
C )éT e —»?—» h’L

Cf.) F'is simpler than

@
<O———>

abreast Davies-Meyer and tandem Davies-Meyer
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Collision Resistance

Th. 3 Let H be a hash function composed of

gi_1+L>L =<"> > gz
F = |hia s
m;
v Y
c»@j» ¢ [
def . ..
Adv$'(q) = success prob. of the optimal collision finder for H

which asks ¢ pairs of queries to (e, e ).

q

2n—1

2
Then, Adv$'(¢) < 3 ( ) in the ideal cipher model.

n is the block-length of e.



Indistinguishability in the Iteration

m; X m; {
RN
g’[,—l— - f - g@ g’[,—l— - gq/
random
o,
hic1— T —es] p - f ~ N hi—1—] — Ny

f is a random oracle.

Def. (Indistinguishability in the Iteration)
F' behaves as well as R in iterated HFs.
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Example

f p(g, hym) = (g, h,m @ c), ther

we can distinguish F' from R even in iterated HFs.
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Sufficient Condition for Indistinguishability in the Iteration

Suppose that

e p(g,h,m) = (pev(g, h), Pm(m))

® p., has no fixed points

Then, it is difficult to distinguish F' from R in the iteration.

random
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Conclusion

e Some plausible DBL HFs

— composed of

a smaller compression function or a block cipher

x
m;
i 9i—1 -—l—»i~')=gz
hi—1 i I
- h; C"EV}T_’G 'P - hi
p o pis an identity permutation key-length > block-length

— optimally collision-resistant

e A new security notion: Indistinguishability in the iteration



