Computing the algebraic immunity
efficiently

INRIA, projet CODES

ZIINRIA

Outline

1 Introduction

2 | A first algorithm

3 A more “efficient” version

4 Benchmarks

Part 1
Introduction

Boolean functions and annihilator space

Let » [bean m-variable Boolean function (F5' — F)

» d be a given degree

Goal : compute the annihilator space of degree < d for f

Adf) E{g: degg<d, f(z)g(z)=0VaeFp}

Reason : Algebraic immunity of f o

smallest d such that Ay(f) U A4(1 + f) # {0}

1/17

Basic algorithm : Gaussian elimination

ANF g(x) =>» g,][+¥ g, € Fy, y € FY

yl<d i1

» Number of coeffs (g,) : k © () + () + 4+ ()
» Va such that f(z) =1 — linear equation g(x) =0
» Number of equations : | f| i > o f(x)

» GE complexity for the | f| x k linear system : O(2°"'k)

2/17

State of the art

Lazy Gaussian elimination worst O(2"k?)
average O(k?)

1. Take the equations 1 by 1 (randomly)
2. Update a basis of the generated space so far
3. Stop as soon as we get a space of dimension k

[Meier Pasalic Carlet 04] O(k?)

[Armknecht Carlet Gaborit Kiinzli Meier Ruatta 06]
(Accepted in eurocrypt 2006) O(k?)

3/17

Our Algorithm complexity

» Efficient for d small and m large

For d fixed and m — o©

our algorithm can prove that Ay(f) = {0} in O(k)
except for a vanishing proportion P of balanced functions f

[{ balanced [Ad(f) = {0} [verifiable in O(k) }j

£l=2m

General case : no results but good practical behavior

4/17

Part 2
A first algorithm

Order on F7'

Fy — 0,2™)
(21, y) — > a2
Representation of f
fO)f(1)... f(2"—=1) & f

In particular, if we split the interval in two

f(.fEl,...,CEm_l,O) f(ajlw"amm—l)l)

5/17

(u,u+v) decomposition

flzy,...,xnm) =u(x1,..., Tm_1) + Tpo(X1, ... Tim_1)
f U U+ v
g € Aa(f) \ {0} u u 4 v

We have either
u # 0 and u.u' =0 u € Ag(u)

or
w'=0,v#0and (u4+v)o' =0 v eA; (u+w)

6/17

Recursive decomposition (d = 2, m = 8)

f(xy,...,xs)

For each subfunction (deff) we want A, (f") = {0}.

We stop at a certain depth or when d" = 0 (in red here).

7/17

Recursive decomposition (d = 2, m = 8)

fxy,...,x8)
Ty = 0 | 1
17 = o [1] o] 1
76 = o[1 [o]1]o] 1]

For each subfunction (deff) we want A, (f") = {0}.

We stop at a certain depth or when d" = 0 (in red here).

7/17

Immunity verification, input = f,m,d

1. [Decomposition] recursively decompose f until subfunc-
tions in m’' = 2d + 1 + [log(m)| variables or with d’' =0
and for each of them, Apply step 2.

2. [Subfunction verification| execute Lazy Gaussian Elimi-
nation with the correct degree d'. If the subfunction admits
an annihilator, go to step 4.

3. [Immune] return Yes, we proved that A,(f) = {0}.

4. [Failure] return No, we cannot prove the immunity of f.

8/17

Complexity analysis, f balanced, m — oo

Counting the subfunctions of each kind (d',m') we get
C =310 0(m>"Cee(d,m') + O(m?)Cy

Using a result in [Didier 05], Cge(d,m’) = O((logm)>®)
Key point is that for d’ = 0 subfunctions, Cyp=0(1)

» We get the final complexity C=0(m% = O(k)

» And in the same way P < e2m(1+o(1))

0/17

Remarks

In our model :
e Only evaluations of f are allowed
e Computing f(x) isin O(1)
we have
» The O(k) is optimal to show that Ay(f) = {0}
» Far from checking all the points (k < 2™)

» If there is an annihilator, minimal complexity 2(2™)

10/17

Part 3
A more “efficient” version

Basic idea

f .
fou X restriction of f to 0,a)

The Algorithm will compute incrementally the space

def

Ad(f<a) — {g<a7 Vx € [O,CL), f(%)g(x) — O}

Connection with the previous algorithm

Theorem g-,(x)

2. a]l=r

ly|<d, y<a

In an unique way

For any decomposition on which Algorithm 1 returns Yes :

[Ova)Nf/

= gy:O \V/yE[O,CL)

0, a)

[avb) Nf/

And soon ...

12/17

Incremental Algorithm, input = f,m,d

For a from 0 to 2" — 1 do

1.[Fact] S is a stack containing a basis of A4(f<.).

2.[Add element ?] if (Ja| < d) push [] z;® onto the top of S.

3.[Remove element 7] if (f(a) = 1) XOR the element closest
to the top that evaluates to 1 on a (if any) with all the
other elements that evaluate to 1 on a. Remove it from S.

4.[Skip to next monomial ?] if (S is empty) we can go
directly to the next a such that |a| < d.

13/17

Remarks

Drawback :
e Difficult to analyze the real complexity
o Cige(d,m)) = O(d'k?) — Cie(d,m') = 02" k?)
for the same P, complexity in O(k(logm)?)
But in practice :

e It works on the optimal decomposition

e [t performs well even when we don't have d < m

e |t can find annihilators efficiently

14/17

Part 4
Benchmarks

Immunity verification (P4/2.6Ghz/1Gb)

Time for A;(f) and m-variable random balanced f

dm [26(38(4,10| 5,12 | 6,14 | 7,16 | 8,18 | 9,20
k || 22 193 | 386 | 1586 | 6476 | 26333 | 1.10° | 4.10°

LGE| Os | Os | Os | 0.1s | bs |2m30s| oom | oom
Inc | Os | Os | Os |0.01s| 0.5s 20s 15m | 12h

We found Ay(f) = {0} in all our experiments

dm| 632 | 7,32 | 464 | 5,64 | 2,128 | 3,128 | 2,256
k 11.10°] 4.10° | 6.10° | 8.10° | 8.10% | 3.10° | 3.10*
Inc | 30s | 2m40s | 32s 3m 0.1s 32s 0.3s

15/17

Computing an annihilator (P4/2.6Ghz/1Gb)

Time for random balanced function having at least one
degree d annihilator, we found it back in all our experiment

dm| 2,30 330 | 4,30 | 5,30 | 6,30
k | 466 | 4526 | 3.10*|2.10° | 8.10°
Inc || 13m | 1h | 3h45 - -

Inc™ | 1s 1s 4s 31s | 4m34s

Algorithm Inc” : same as Inc except that in step 4,
we skipped to the next monomial if (|S| < 1)

16/17

Conclusion

Analysis without any assumption on the linear system

Allows the construction of cryptographically strong functions
e Devise such functions with respect to other criteria

e Check afterwards their immunity to algebraic attacks

May be used in some cases to find an annihilator efficiently

17/17

