
Computing the algebraic immunity
efficiently

Frédéric Didier, Jean-Pierre Tillich
INRIA, projet CODES

Outline

1 Introduction

2 A first algorithm

3 A more “efficient” version

4 Benchmarks

Part 1

Introduction

Boolean functions and annihilator space

Let I f be an m-variable Boolean function (Fm
2 → F2)

I d be a given degree

Goal : compute the annihilator space of degree ≤ d for f

Ad(f) def= {g : deg g ≤ d, f(x)g(x) = 0 ∀x ∈ Fm
2 }

Reason : Algebraic immunity of f
def=

smallest d such that Ad(f) ∪ Ad(1 + f) 6= {0}

1/17

Basic algorithm : Gaussian elimination

ANF : g(x) =
∑

|y|≤d

gy

m∏
i=1

xyi
i gy ∈ F2, y ∈ Fm

2

I Number of coeffs (gy) : k
def=

(
m
0

)
+

(
m
1

)
+ · · ·+ (

m
d

)

I ∀x such that f(x) = 1 → linear equation g(x) = 0

I Number of equations : |f | def=
∑

x f(x)

I GE complexity for the |f | × k linear system : O(22mk)

2/17

State of the art

Lazy Gaussian elimination worst O(2mk2)
average O(k3)

1. Take the equations 1 by 1 (randomly)

2. Update a basis of the generated space so far

3. Stop as soon as we get a space of dimension k

[Meier Pasalic Carlet 04] O(k3)

[Armknecht Carlet Gaborit Künzli Meier Ruatta 06]

(Accepted in eurocrypt 2006) O(k2)

3/17

Our Algorithm complexity

I Efficient for d small and m large

For d fixed and m →∞
our algorithm can prove that Ad(f) = {0} in O(k)
except for a vanishing proportion P of balanced functions f

'

&

$

%

f balanced

(|f | = 2m−1)

#

"

Ã

!

Ad(f) = {0}
º

¹

·

¸
verifiable in O(k)

General case : no results but good practical behavior

4/17

Part 2

A first algorithm

Order on Fm
2

Fm
2 → [0, 2m)

(x1, . . . , xm) 7→ ∑m
i=1 xi2i−1

Representation of f

f(0)f(1) . . . f(2m − 1) ⇔ f

In particular, if we split the interval in two

f(x1, . . . , xm−1, 0) f(x1, . . . , xm−1, 1)

5/17

(u,u+v) decomposition

f(x1, . . . , xm) = u(x1, . . . , xm−1) + xmv(x1, . . . , xm−1)

f u u + v

g ∈ Ad(f) \ {0} u′ u′ + v′

We have either

u′ 6= 0 and u.u′ = 0 u′ ∈ Ad(u)
or

u′ = 0, v′ 6= 0 and (u + v).v′ = 0 v′ ∈ Ad−1(u + v)

6/17

Recursive decomposition (d = 2,m = 8)

f(x1, . . . , x8)

x8 = 0 1

x7 = 0 1 0 1

For each subfunction (
def=f ′) we want Ad′(f ′) = {0}.

We stop at a certain depth or when d′ = 0 (in red here).

7/17

Recursive decomposition (d = 2,m = 8)

f(x1, . . . , x8)

x8 = 0 1

x7 = 0 1 0 1

x6 = 0 1 0 1 0 1

For each subfunction (
def=f ′) we want Ad′(f ′) = {0}.

We stop at a certain depth or when d′ = 0 (in red here).

7/17

Immunity verification, input = f,m,d

1. [Decomposition] recursively decompose f until subfunc-

tions in m′ = 2d + 1 + dlog(m)e variables or with d′ = 0
and for each of them, Apply step 2.

2. [Subfunction verification] execute Lazy Gaussian Elimi-

nation with the correct degree d′. If the subfunction admits

an annihilator, go to step 4.

3. [Immune] return Yes, we proved that Ad(f) = {0}.
4. [Failure] return No, we cannot prove the immunity of f .

8/17

Complexity analysis, f balanced, m →∞

Counting the subfunctions of each kind (d′,m′) we get

C =
∑

d′>0 O(md−d′)CLGE(d′,m′) + O(md)C0

Using a result in [Didier 05], CLGE(d′,m′) = O((log m)3d′)

Key point is that for d′ = 0 subfunctions, C0 = O(1)

I We get the final complexity C = O(md) = O(k)

I And in the same way P ≤ e−2dm(1+o(1))

9/17

Remarks

In our model :

• Only evaluations of f are allowed

• Computing f(x) is in O(1)

we have

I The O(k) is optimal to show that Ad(f) = {0}
I Far from checking all the points (k ¿ 2m)

I If there is an annihilator, minimal complexity Ω(2m)

10/17

Part 3

A more “efficient” version

Basic idea

[0, a) → f

f<a
def= restriction of f to [0, a)

The Algorithm will compute incrementally the space

Ad(f<a)
def= {g<a, ∀x ∈ [0, a), f(x)g(x) = 0}

11/17

Connection with the previous algorithm

Theorem g<a(x) =
∑

|y|≤d, y<a

gy

∏
xyi

i in an unique way

For any decomposition on which Algorithm 1 returns Yes :

[0, a) ∼ f ′ ⇒ gy = 0 ∀y ∈ [0, a)

[0, a) [a, b) ∼ f ′ And so on . . .

12/17

Incremental Algorithm, input = f,m,d

For a from 0 to 2m − 1 do

1.[Fact] S is a stack containing a basis of Ad(f<a).

2.[Add element ?] if (|a| ≤ d) push
∏

xai
i onto the top of S.

3.[Remove element ?] if (f(a) = 1) XOR the element closest

to the top that evaluates to 1 on a (if any) with all the

other elements that evaluate to 1 on a. Remove it from S.

4.[Skip to next monomial ?] if (S is empty) we can go

directly to the next a such that |a| ≤ d.

13/17

Remarks

Drawback :

• Difficult to analyze the real complexity

• CLGE(d′,m′) = O(d′k′3) → CInc(d′,m′) = O(2m′k′2)

for the same P, complexity in O(k(log m)2)

But in practice :

• It works on the optimal decomposition

• It performs well even when we don’t have d ¿ m

• It can find annihilators efficiently

14/17

Part 4

Benchmarks

Immunity verification (P4/2.6Ghz/1Gb)

Time for Ad(f) and m-variable random balanced f

d,m 2,6 3,8 4,10 5,12 6,14 7,16 8,18 9,20

k 22 93 386 1586 6476 26333 1.105 4.105

LGE 0s 0s 0s 0.1s 5s 2m30s oom oom

Inc 0s 0s 0s 0.01s 0.5s 20s 15m 12h

We found Ad(f) = {0} in all our experiments

d,m 6,32 7,32 4,64 5,64 2,128 3,128 2,256

k 1.106 4.106 6.105 8.106 8.103 3.105 3.104

Inc 30s 2m40s 32s 8m 0.1s 32s 0.3s

15/17

Computing an annihilator (P4/2.6Ghz/1Gb)

Time for random balanced function having at least one

degree d annihilator, we found it back in all our experiment

d,m 2,30 3,30 4,30 5,30 6,30

k 466 4526 3.104 2.105 8.105

Inc 13m 1h 3h45 - -

Inc∗ 1s 1s 4s 31s 4m34s

Algorithm Inc∗ : same as Inc except that in step 4,

we skipped to the next monomial if (|S| ≤ 1)

16/17

Conclusion

Analysis without any assumption on the linear system

Allows the construction of cryptographically strong functions

• Devise such functions with respect to other criteria

• Check afterwards their immunity to algebraic attacks

May be used in some cases to find an annihilator efficiently

17/17

