Computing the algebraic immunity efficiently

Frédéric Didier, Jean-Pierre Tillich INRIA, projet CODES

Outline

2 A first algorithm

3 A more "efficient" version

4 Benchmarks

Part 1 Introduction

Boolean functions and annihilator space

- Let \blacktriangleright *f* be an *m*-variable Boolean function ($\mathbf{F}_2^m \rightarrow \mathbf{F}_2$) \blacktriangleright *d* be a given degree

Reason : Algebraic immunity of $f \stackrel{\text{def}}{=}$ smallest d such that $\mathcal{A}_d(f) \cup \mathcal{A}_d(1+f) \neq \{0\}$

Basic algorithm : Gaussian elimination

ANF:
$$g(x) = \sum_{|y| \le d} g_y \prod_{i=1}^m x_i^{y_i}$$
 $g_y \in \mathbf{F}_2, \ y \in \mathbf{F}_2^m$

- ▶ $\forall x \text{ such that } f(x) = 1 \rightarrow \text{ linear equation } g(x) = 0$
- Number of equations : $|f| \stackrel{\text{def}}{=} \sum_{x} f(x)$
- GE complexity for the $|f| \times k$ linear system : $O(2^{2m}k)$

State of the art

Lazy Gaussian elimination

worst $O(2^m k^2)$ average $O(k^3)$

- 1. Take the equations 1 by 1 (randomly)
- 2. Update a basis of the generated space so far
- 3. Stop as soon as we get a space of dimension \boldsymbol{k}

[Meier Pasalic Carlet 04] $O(k^3)$

[Armknecht Carlet Gaborit Künzli Meier Ruatta 06] (Accepted in eurocrypt 2006)

3/17

 $O(k^2)$

Our Algorithm complexity

• Efficient for
$$d$$
 small and m large

For d fixed and $m \to \infty$ our algorithm can prove that $\mathcal{A}_d(f) = \{0\}$ in O(k)except for a vanishing proportion **P** of balanced functions f

General case : no results but good practical behavior

Part 2 A first algorithm

Order on \mathbf{F}_2^m

$$\begin{array}{ccc} \mathbf{F}_2^m & \to & [0, 2^m) \\ (x_1, \dots, x_m) & \mapsto & \sum_{i=1}^m x_i 2^{i-1} \end{array}$$

Representation of f

In particular, if we split the interval in two

$f(x_1,\ldots,x_{m-1},0)$	$f(x_1,\ldots,x_{m-1},1)$
---------------------------	---------------------------

(u,u+v) decomposition

$$f(x_1, \ldots, x_m) = u(x_1, \ldots, x_{m-1}) + x_m v(x_1, \ldots, x_{m-1})$$

f	
$g \in \mathcal{A}_d(f) \setminus \{0\}$	

u	u + v
u'	u' + v'

We have either $u' \neq 0$ and u.u' = 0 $u' \in \mathcal{A}_d(u)$ or u' = 0 $u' \in \mathcal{A}_d(u)$

$$u' = 0, v' \neq 0$$
 and $(u + v).v' = 0$ $v' \in \mathcal{A}_{d-1}(u + v)$

Recursive decomposition (d = 2, m = 8)

$$f(x_1,\ldots,x_8)$$

For each subfunction $(\stackrel{\text{def}}{=} f')$ we want $\mathcal{A}_{d'}(f') = \{0\}$. We stop at a certain depth or when d' = 0 (in red here).

Recursive decomposition (d = 2, m = 8)

$$f(x_1,\ldots,x_8)$$

For each subfunction $(\stackrel{\text{def}}{=} f')$ we want $\mathcal{A}_{d'}(f') = \{0\}$.

We stop at a certain depth or when d' = 0 (in red here).

1. [Decomposition] recursively decompose f until subfunctions in $m' = 2d + 1 + \lceil \log(m) \rceil$ variables or with d' = 0 and for each of them, Apply step 2.

2. [Subfunction verification] execute Lazy Gaussian Elimination with the correct degree d'. If the subfunction admits an annihilator, go to step 4.

- 3. [Immune] return Yes, we proved that $\mathcal{A}_d(f) = \{0\}$.
- 4. [Failure] return No, we cannot prove the immunity of f.

Counting the subfunctions of each kind (d', m') we get

$$\mathbf{C} = \sum_{d'>0} O(m^{d-d'}) \mathbf{C}_{\mathsf{LGE}}(d', m') + O(m^d) \mathbf{C}_0$$

Using a result in [Didier 05], $C_{LGE}(d', m') = O((\log m)^{3d'})$ Key point is that for d' = 0 subfunctions, $C_0 = O(1)$

We get the final complexity

$$\mathbf{C} = O(m^d) = O(k)$$
$$\mathbf{P} \le e^{-2^d m(1+o(1))}$$

Remarks

In our model :

- Only evaluations of f are allowed
- Computing f(x) is in O(1)

we have

- The O(k) is optimal to show that $\mathcal{A}_d(f) = \{0\}$
- Far from checking all the points $(k \ll 2^m)$
- ▶ If there is an annihilator, minimal complexity $\Omega(2^m)$

Part 3 A more "efficient" version

Basic idea

$$f_{ restriction of f to $[0, a)$$$

The Algorithm will compute incrementally the space

$$\mathcal{A}_d(f_{< a}) \stackrel{\text{def}}{=} \{g_{< a}, \quad \forall x \in [0, a), \quad f(x)g(x) = 0\}$$

Connection with the previous algorithm

Theorem
$$g_{ in an unique way$$

For any decomposition on which Algorithm 1 returns Yes :

$$\begin{bmatrix} 0, a \end{pmatrix} \sim f' \qquad \Rightarrow \quad g_y = 0 \quad \forall y \in [0, a)$$
$$\begin{bmatrix} 0, a \end{pmatrix} \qquad \begin{bmatrix} a, b \end{pmatrix} \sim f' \qquad \text{And so on } \dots$$

For a from 0 to $2^m - 1$ do

1.[Fact] S is a stack containing a basis of $\mathcal{A}_d(f_{< a})$.

2.[Add element?] if $(|a| \leq d)$ push $\prod x_i^{a_i}$ onto the top of S.

3.[Remove element?] if (f(a) = 1) XOR the element closest to the top that evaluates to 1 on a (if any) with all the other elements that evaluate to 1 on a. Remove it from S.

4.[Skip to next monomial?] if (S is empty) we can go directly to the next a such that $|a| \le d$.

Remarks

Drawback :

• Difficult to analyze the real complexity

• $\mathbf{C}_{LGE}(d', m') = O(d'k'^3) \to \mathbf{C}_{Inc}(d', m') = O(2^{m'}k'^2)$

for the same **P**, complexity in $O(k(\log m)^2)$

But in practice :

- It works on the optimal decomposition
- It performs well even when we don't have $d \ll m$
- It can find annihilators efficiently

Part 4 Benchmarks

Immunity verification (P4/2.6Ghz/1Gb)

Time for $\mathcal{A}_{\mathbf{d}}(f)$ and \mathbf{m} -variable random balanced f

d,m	2,6	3,8	4,10	5,12	6,14	7,16	8,18	9,20
k	22	93	386	1586	6476	26333	1.10^{5}	4.10^{5}
LGE	0s	0s	0s	0.1s	5s	2m30s	oom	oom
Inc	0s	0s	0s	0.01s	0.5s	20s	15m	12h

We found $\mathcal{A}_d(f) = \{0\}$ in all our experiments

d,m	6,32	7,32	4,64	5,64	2,128	3,128	2,256
k	1.10^{6}	4.10^{6}	6.10^{5}	8.10^{6}	8.10^{3}	3.10^{5}	3.10^4
Inc	30s	2m40s	32s	8m	0.1s	32s	0.3s

Computing an annihilator (P4/2.6Ghz/1Gb)

Time for random balanced function having at least one degree d annihilator, we found it back in all our experiment

d,m	2,30	3,30	4,30	5,30	6,30
k	466	4526	3.10^{4}	2.10^{5}	8.10^{5}
Inc	13m	1h	3h45	-	_
Inc*	1s	1s	4s	31s	4m34s

Algorithm $\ln c^*$: same as $\ln c$ except that in step 4, we skipped to the next monomial if $(|S| \le 1)$

Conclusion

Analysis without any assumption on the linear system

Allows the construction of cryptographically strong functions

- Devise such functions with respect to other criteria
- Check afterwards their immunity to algebraic attacks

May be used in some cases to find an annihilator efficiently