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X86 L1 Cache

Tag Set Offset

06 512 11

Tag, Data

Sets

Ways

• Stores fixed-size (64B) 
lines

• Arranged as multiple 
(64) sets, each consisting 
of multiple (8) ways.

• Each memory line maps 
to a single cache set
–Bits 6-11 select the set
–Can be cached in any 

of the ways in the set
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X86 L1 Cache

• Better visualised when 
the cache is rotatedM
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Prime+Probe [OST05, Per05]

• Attacker chooses a cache-
sized memory buffer

• Attacker accesses all the 
lines in the buffer, filling 
the cache with its data

• Victim executes, evicting 
some of the attackers lines 
from the cache

• Attacker measures the time 
to access the buffer
– Accesses to cached lines is 

faster than to evicted lines
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The gritty details

• The observer effect

– Our code uses the cache  - want to minimise our 
footprint

• The optimising compiler removes what it 
thinks is dead code

– Not optimising increases the code's footprint

– Solution:

• Know your optimiser

• Use assembly language
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Thrashing

• The cache uses a Pseudo-LRU replacement

• Our probe + victim access can cause thrashing

• Solution [TOS10]: Zig-zag on data
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Hardware prefetcher

• Aims to improve temporal locality
• Brings data to the cache before it is required

– We do not want that!!!

• Solution [TOS10]: pointer chasing
– [Per05] uses data dependency for achieving the same 

result
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Data streams

• The cache aims to predict regular access 
patterns with fixed strides

• Linear access within a page may trigger the 
mechanism

• Solution [OST10]: Randomise order of probed 
sets
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Putting it all together

• L1-capture

• With L1-rattle

• With rungnupg
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Challenges to last-level cache attacks

• Difficulty in finding memory lines that map to a 
given cache set

– Virtual memory

– LLC slices

• Large cache size and longer cache access times 
mean LLC Prime+Probe is very slow

• Visibility of the victim memory access at the LLC

– Intel inclusive cache takes care of the issue
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Virtual vs. Physical addresses

• In L1, the cache stride is the 
same as the page size (4KiB)
– The cache set is completely 

determined by the page 
offset
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Addressing uncertainty
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In larger caches, the stride 
is bigger. Pages only 
contain lines of some of 
the cache sets. 

Parts of the mapping of 
memory to cache sets is 
masked by the virtual 
address. 
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Address fields
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Addressing uncertainty
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The attacker cannot 
guarantee an even 
cover of the cache. 

Self-contention
Missed victim access
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Solution : Use large pages [LYG+15,IES15]
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Tag Set Offset

06 512 11

L1 Cache

Page number Page offset

012 11

Virtual address

Tag Set Offset

06 517 16

LLC SandyBridge

Tag Set Offset

06 516 15

LLC Skylake

A feature of the MMU. Large 
pages (2MiB or bigger) reduce 
the overhead of  address 
translation

Large page number Large page offset

021 20
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Solution – large pages
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Intel LLC Slices

• The last-level cache is 
divided into slices

• One slice per core
– Two in Skylake?

• The slice for a memory 
line is chosen using an 
undisclosed hash 
function 17
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Reverse Engineering the Hash Function

• [MLN+15] Use performance counters to RE 
linear hash functions (number of cores is a 
power of two)
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Reverse Engineering the Hash Function

• [YGL+15] use timing to RE the function for 6 
cores 
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Reverse Engineering the Hash Function

• [MLN+15] Use performance counters to RE 
linear hash functions (number of cores is a 
power of two)

• [YGL+15] use timing to RE the function for 6 
cores 

• But – need physical addresses

– Can be done on Linux < 4.0

– Unless running in a VM
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Probing the hash function

• Start with a set of potentially conflicting memory 
lines
– At least twice as many as the totalsize of the cache 

sets

• Expand a subset until it conflicts on a single set in 
a single slice

• Contract the subset until it contains only lines of 
the conflicted set

• Collect all of the lines of the conflicting set from 
the original set

• Repeat until the original set is (almost) empty
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Expand

– Start from an empty 
subset

– Iteratively add lines to 
the subset as long as 
there is no self-eviction

– Self-eviction is detected 
by priming a potential 
new member, accessing 
the current subset and 
timing another access 
to the potential new 
member
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Contract

– Iteratively remove lines 
from the subset 
checking for self-
eviction

– Only keep members if 
self-eviction disappears 
when removed
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Collect

– Scan original set, 
looking for members 
that conflict with the 
contracted subset
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Demo

• L3-capture

• L3-capturecount
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Slow LLC Prime+Probe times
• L1 (32KB) probe: 

– 64 sets * 8 ways *4 cycles = 2,048 cycles

• Small last-level cache (6MB): 

– 8,192 sets * 12 ways * ~30 cycles = ~3,000,000 cycles

• We cannot probe the entire LLC  in a reasonable 
time, but probing one cache set is fast

• Our solution: 

– Probe one or a few cache sets at a time 

– Look for temporal patterns rather than spatial 
footprints
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Demo

• L3-scan
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Countermeasures

• Hardware

• System

• Software

28



Hardware countermeasure

• Don't share

• Hardware cache partitioning [DJL+12]

– Intel Cache Allocation Technology

• Cache Randomisation [WL06]
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System Countermeasures

• Limited sharing

– Don't share memory

– Don’t share cores

• Cache Colouring [BLRB94,SSCZ11]

– STEALTHMEM [KPM12]

• CATalyst [LGY+16]

• CacheBar [ZRZ16]
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Software Countermeasures

• Constant-time programming

– No variable-time instructions

– No secret-dependent flow control

– No secret-dependent memory access
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Non constant-time [YB14]
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Constant-time
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Constant-time
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