
Microarchitectural Side-Channel
Attacks

Part 2

Yuval Yarom

The University of Adelaide and Data61

1

X86 L1 Cache

Tag Set Offset

06 512 11

Tag, Data

Sets

Ways

• Stores fixed-size (64B)
lines

• Arranged as multiple
(64) sets, each consisting
of multiple (8) ways.

• Each memory line maps
to a single cache set
–Bits 6-11 select the set
–Can be cached in any

of the ways in the set
2

X86 L1 Cache

• Better visualised when
the cache is rotatedM

em
o

ry
C

ach
e

Sets

Ways

3

Prime+Probe [OST05, Per05]

• Attacker chooses a cache-
sized memory buffer

• Attacker accesses all the
lines in the buffer, filling
the cache with its data

• Victim executes, evicting
some of the attackers lines
from the cache

• Attacker measures the time
to access the buffer
– Accesses to cached lines is

faster than to evicted lines

M
em

o
ry

C
ach

e

4

The gritty details

• The observer effect

– Our code uses the cache - want to minimise our
footprint

• The optimising compiler removes what it
thinks is dead code

– Not optimising increases the code's footprint

– Solution:

• Know your optimiser

• Use assembly language

5

Thrashing

• The cache uses a Pseudo-LRU replacement

• Our probe + victim access can cause thrashing

• Solution [TOS10]: Zig-zag on data

6

S0 S1 S2 S3 S4 S5 S6 S7V0 S0 S1 S6 S7

Hardware prefetcher

• Aims to improve temporal locality
• Brings data to the cache before it is required

– We do not want that!!!

• Solution [TOS10]: pointer chasing
– [Per05] uses data dependency for achieving the same

result

7

Data streams

• The cache aims to predict regular access
patterns with fixed strides

• Linear access within a page may trigger the
mechanism

• Solution [OST10]: Randomise order of probed
sets

8

Putting it all together

• L1-capture

• With L1-rattle

• With rungnupg

9

Challenges to last-level cache attacks

• Difficulty in finding memory lines that map to a
given cache set

– Virtual memory

– LLC slices

• Large cache size and longer cache access times
mean LLC Prime+Probe is very slow

• Visibility of the victim memory access at the LLC

– Intel inclusive cache takes care of the issue

10

Virtual vs. Physical addresses

• In L1, the cache stride is the
same as the page size (4KiB)
– The cache set is completely

determined by the page
offset

P
h

ys. M
em

o
ry

C
ach

e

V
irt. ad

d
resses

?

11

Addressing uncertainty

P
h

ys. M
em

o
ry

C
ach

e

V
irt. ad

d
resses

In larger caches, the stride
is bigger. Pages only
contain lines of some of
the cache sets.

Parts of the mapping of
memory to cache sets is
masked by the virtual
address.

12

Address fields

13

Tag Set Offset

06 512 11

L1 Cache

Page number Page offset

012 11

Virtual address

Tag Set Offset

06 517 16

LLC SandyBridge

Tag Set Offset

06 516 15

LLC Skylake

Addressing uncertainty

P
h

ys. M
em

o
ry

C
ach

e

V
irt. ad

d
resses

The attacker cannot
guarantee an even
cover of the cache.

Self-contention
Missed victim access

14

Solution : Use large pages [LYG+15,IES15]

15

Tag Set Offset

06 512 11

L1 Cache

Page number Page offset

012 11

Virtual address

Tag Set Offset

06 517 16

LLC SandyBridge

Tag Set Offset

06 516 15

LLC Skylake

A feature of the MMU. Large
pages (2MiB or bigger) reduce
the overhead of address
translation

Large page number Large page offset

021 20

Virtual address

Solution – large pages

P
h

ys. M
em

o
ry

C
ach

e

V
irt. ad

d
resses

16

Intel LLC Slices

• The last-level cache is
divided into slices

• One slice per core
– Two in Skylake?

• The slice for a memory
line is chosen using an
undisclosed hash
function 17

Tag Set Offset

06 517 16

LLC SandyBridge

Hash

Reverse Engineering the Hash Function

• [MLN+15] Use performance counters to RE
linear hash functions (number of cores is a
power of two)

18

Reverse Engineering the Hash Function

• [YGL+15] use timing to RE the function for 6
cores

19

Reverse Engineering the Hash Function

• [MLN+15] Use performance counters to RE
linear hash functions (number of cores is a
power of two)

• [YGL+15] use timing to RE the function for 6
cores

• But – need physical addresses

– Can be done on Linux < 4.0

– Unless running in a VM
20

Probing the hash function

• Start with a set of potentially conflicting memory
lines
– At least twice as many as the totalsize of the cache

sets

• Expand a subset until it conflicts on a single set in
a single slice

• Contract the subset until it contains only lines of
the conflicted set

• Collect all of the lines of the conflicting set from
the original set

• Repeat until the original set is (almost) empty

21

Expand

– Start from an empty
subset

– Iteratively add lines to
the subset as long as
there is no self-eviction

– Self-eviction is detected
by priming a potential
new member, accessing
the current subset and
timing another access
to the potential new
member

22

🙂

🙂

🙂

🙂

🙂

🤔😡
😈

Contract

– Iteratively remove lines
from the subset
checking for self-
eviction

– Only keep members if
self-eviction disappears
when removed

23

🙂

🙂

🙂

🙂

🙂

🤔
😈

Collect

– Scan original set,
looking for members
that conflict with the
contracted subset

24

🙂

🙂
🙂

🙂🙂
🙂
🙂

😇

😇😇

😇
😇
😇

😍
😍

😍

😍
😍
😍
😍
😍

🤔🤔

🤔
🤔
🤔

Demo

• L3-capture

• L3-capturecount

25

Slow LLC Prime+Probe times
• L1 (32KB) probe:

– 64 sets * 8 ways *4 cycles = 2,048 cycles

• Small last-level cache (6MB):

– 8,192 sets * 12 ways * ~30 cycles = ~3,000,000 cycles

• We cannot probe the entire LLC in a reasonable
time, but probing one cache set is fast

• Our solution:

– Probe one or a few cache sets at a time

– Look for temporal patterns rather than spatial
footprints

26

Demo

• L3-scan

27

Countermeasures

• Hardware

• System

• Software

28

Hardware countermeasure

• Don't share

• Hardware cache partitioning [DJL+12]

– Intel Cache Allocation Technology

• Cache Randomisation [WL06]

29

System Countermeasures

• Limited sharing

– Don't share memory

– Don’t share cores

• Cache Colouring [BLRB94,SSCZ11]

– STEALTHMEM [KPM12]

• CATalyst [LGY+16]

• CacheBar [ZRZ16]

30

Software Countermeasures

• Constant-time programming

– No variable-time instructions

– No secret-dependent flow control

– No secret-dependent memory access

31

Non constant-time [YB14]

32

Constant-time

33

Constant-time

34

Bibliography
[ABF+15] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol and Y. Yarom, "Amplifying Side Channels Through

Performance Degradation", ePrint 2015/1141
[AK09] O. Acıiçmez, Ç. K. Koç, "Microarchitectural Attacks and Countermeasures," in Ç. K. Koç, ed.

Cryptographic Engineering, Springer US, 2009
[AS07] O. Acıiçmez and J-P Seifert, "Cheap Hardware Parallelism Implies Cheap Security", FDTC 2007
[Ber05] D. J. Bernstein, "Cache-timing attacks on AES", http://cr.yp.to/antiforgery/cachetiming-20050414.pdf,

2005
[DJL+12] L. Domnister, A. Jaleel, J, Loew, N. Abu-Ghazaleh and D. Ponomarev, "Non-Monopolizable Caches: Low-

Complexity Mitigation of Cache Side Channel Attacks", TACO 8(4), 2012
[GBK11] D. Gullasch, E. Bangerter and S. Krenn, "Cache Games -- Bringing Access-Based Cache Attacks on {AES}

to Practice", IEEE S&P 2011
[GYCH16] Q. Ge, Y. Yarom, D. Cock and G. Heiser, "A Survey of Microarchitectural Timing Attacks and

Countermeasures on Contemporary Hardware", ePrint 2016/613
[GMWM16] D. Gruss, C. Maurice, K. Wagner and S. Mangard, "Flush+Flush: A Fast and Stealthy Cache Attack",

DIMVA 2016
[GSM15] D. Gruss , R. Spreitzer and S. Mangard, "Cache Template Attacks: Automating Attacks on Inclusive Last-

Level Caches", USENIX Security 2015
[IES15] G. Irazoqui, T. Eisenbarth and B. Sunar, "S$A: A Shared Cache Attack that Works Across Cores and

Defies VM Sandboxing – and its Application to AES", IEEE S&P 2015.
[IES16] G. Irazoqui, T. Eisenbarth and B. Sunar, "Cross processor cache attacks", AsiaCCS 2016
[IIES14] G. Irazoqui, M. S. Inci, T. Eisenberth and B. Sunar, "Wait a minute! A fast, Cross-VM Attack on AES", RAID

2014
[Lam73] B. W. Lampson, "A Note on the Confinement Problem", CACM 16(10), 1973
[LYG+15] F. Liu, Y. Yarom, Q. Ge, G. Heiser and R. B. Lee, "Last-Level Cache Side-Channel Attacks are Practical", ,

IEEE S&P 2015
[MLN+15] C. Maurice, N. Le Scourance, C. Neumann, O. Heen and A. Francillon, "Reverse Engineering Intel Last-

Level Cache Complex Addressing Using Performance Counters", RAID 2015
[NS16] M. Neve and J-P Seifert, "Advances on access-driven cache attacks on AES," 13th SAC, 2006

35

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Bibliography

[OST06] D. A. Osvik, A. Shamir and E. Tromer, "Cache Attacks and Countermeasures: The Case of AES", CT-RSA
2006

[pag02] D. Page, "Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel," ePrint 2002/169
[Pag03] D. Page, "Defending against cache-based side-channel attacks," Information Security Technical Report,

8(1), 2003
[Per05] C. Percival, "Cache Missing for Fun and Profit", BSDCan, 2005
[PGM+16] P. Pessl, D. Gruss, C. Maurice, M. Schwarz and S. Mangard, "DRAMA: Exploiting DRAM Addressing for

Cross-CPU Attacks", USENIX Security 2016
[TOS10] E. Trome, D. A. Osvik, A. Shamir, "Efficient Cache Attacks on AES, and Countermeasures", JoC 23(1),

2010
[TTMM02] Y. Tsunoo, E. Tsujihara, K. Minematsu and H. Miyauchi, "Cryptanalysis of Block Ciphers Implemented on

Computers with Cache", International Symposium on Information Theory and Its Applications, Oct.
2002.

[WL06] Z. Wang and R. B. Lee, "Covert and Side Channels Due to Processor Architecture", ACSAC 2006
[WS12] Y. Wang and G. E. Suh, "Efficient timing channel protection for on-chip networks", NoCS 2012.
[WXW12] Z. Wu, Z. Xu and H. Wang, "Whispers in the Hyper-space: High-speed Covert Channel Attacks in the

Cloud", USENIX Security 2012
[YB14] Y. Yarom and N. Benger, "Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-

channel Attack", ePrint 2014/140
[YF14] Y. Yarom and K. Falkner, "FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack",

USENIX Security 2014
[YGH16] Y. Yarom, D. Genkin and N. Heninger, "CacheBleed: A Timing Attack on OpenSSL Constant Time RSA",

CHES 2016
[YGL+15] Y. Yarom, Q. Ge, F. Liu, R.B. Lee and G. Heiser, "Mapping the Intel Last-Level Cache", ePrint 2015/905
[ZXZ16] X. Zhang, Y. Xiao and Y. Zhang "Return-Oriented Flush-Reload Side Channels on ARM and Their

Implications for Android Devices", CCS 2016

36

