

RUHR-UNIVERSITÄT BOCHUM

Early Propagation and Imbalanced Routing, How to Diminish in FPGAs

26. September 2014

Amir Moradi and Vincent Immler

Ruhr University Bochum, Fraunhofer Institution Munich

Story?

- 'Flatten' power consumption using complementary signals
- Fix number of toggles using Dual-Rail Pre-Charge Logic (DPL)

Story?

Examples

WDDL

Early Propagation

Delay(A) > Delay (B)

Story?

Examples

Early Propagation

Delay(A) > Delay (B)

precharge phase starts once an input is in precharge

What to do in precharge phase?

- borrow knowledge from asynchronous circuit design
- form S-R latches by a feedback loop
 - evaluation works as DPL_noEE
 - precharge does not start till all inputs in precharge
- the first (FPGA-based) logic with no early propagation in both phases

Early Propagation

- Delay (A) > Delay (B)
- Delay $(A_f) = Delay (A_t)$
- Delay $(B_f) = Delay (B_t)$

Balanced Routings

- If not considered, the same principle as early propagation
- Problem of most DRP logics
 - some solutions for ASIC, e.g., fat-wire approach
 - no way for FPGAs
 - missing routing flexibilities
 - no control over routing via FPGA standard tools
 - conceptual routing delays

Representation in Xilinx FPGA Editor

FPGA Routing Architecture

RUHR-UNIVERSITÄT BOCHUM **Embedded Security Group**

Brief Analysis of Virtex-5 Routing Architecture

1.11	116-14	18.18	1.14	14	1 T F	14.1	1.11.1	1 2.7	
$\lambda = 11$	116-14	18.14	1.14	14	1 TE	14.1	1.11.1	1 11	e te ti
t = 0	116-16	18,18	1.14	14	10 14	16.1	1.11.1	111	E TE TI
1 - 11	111-14	18.18	11.14	14	1 TF	16.1	611	6 10 1	E 18 1
$0 \leq 21$	110.14	18.18	1 11	14	10.14	16.1	9	8 18 1V	e te tr
$1 \leq 21$	14.14	14	1.14	14	5 A 1	14.1	1.11.1	6 16 16	1.16.1
$1 \leq 21$	14.14	(10)	1.14	14	5 G	160	1.11.1	1. 16 . 16	1.16.2
$0 \leq 21$	19.14	1	1 14	14	10 14	160	1.11.1	1 1 1	
$0 \leq 21$	1111	19.14	3 G	14	- 4	140	1.11.	1 1 1	~•
$i \in \mathcal{D}$		14	1 4	14	'D 🐪	14.1	1.4.1	/.	1.16
1.12	1.1.1.		n.	10	i				
1.1	1.1	1.1	- A		!	. t	1 1 5		
				X		1	1.1.	R (R)	
1.1	(1	2		<u></u>		11		e (e (e	E (E)
1.1	11.11		<u> </u>	18	<u> </u>	1	111	e [8]](e (#),
1.11	18.18	Et al.		14	.0 .t	\mathbb{E}	1.11.1	e . e . e	0
' (4)-	18.14	18.18	1.14	14	<u>1</u>	تمعا _		4 '8 '	6
3		<u> </u>	1.14	14	<u>ہا</u>	XI.	The .	e 18-16	17 I I
' ଜି			1.14	1 M -	10 14	18.1	1.11.1	P '8 '	<u>'</u> 5' '
่ด้	PECT.		1 1	16	· 14	хe	THE .	e 18-16	1.11
, Ui		14	1 1	1.6	10 iv	14.1	1 11 1	2 2 3	e 19-19

#	$d(m_1)$	$d(m_0)$	$ \Delta d $	Slice Source	Slice Sink
1	1018	1018	0	X1Y0	X7Y0
2	1015	1013	2	X1Y1	X7Y1
3			2		
4			2		
5			2		
6	1007	1009	2	X13Y3	X13Y3
7			2		
8			2		
9			2		
10			4		
11	1030	1032	2	X9Y7	X13Y7
12	1097	1100	3	X5Y5	X9Y5

Routing Issues

- No documentation of switch box from Xilinx
- No support for balanced rails in any FPGA related tool
- No API for extracting relevant information / FPGA Editor
- Two open source projects target this issue:
 - Torc (Tools for Open Reconfigurable Computing, written in C++)
 - Rapidsmith (written in Java)
- Both use unsupported intermediate file format:
 - XDL (Xilinx Design Language)
 - Human-readable file format equivalent to proprietary NCD format

Our Solution

- for every dual-rail route, all possible routes are extracted
- based on the delay of the routes reported by Xilinx FPGA Editor
- customized router
 - parsing and modifying XDL file by *RapidSmith*
 - routing algorithm, sat solver, ...
 - achieving the best possible route with minimal delay difference between the rails

Our Solution

Case Study

- again Canright Sbox ^(C)
- 122 gates, 606 dual-rail routes

Case Study

SASEBO-GII (Virtex-5)

- Profiles to compare
 - WDDL, Xilinx routing
 - DPL_noEE, Xilinx routing
 - AWDDL, Xilinx routing
 - AWDDL, customized routing

17

Mutual (Perceived) Information

based on 500k traces

Moments-correlating DPA

500k traces for profiling, another 500k traces for the attack

Final Message

- By the customized router there is still a detectable leakage
 - a perfect dual-rail route with null delay difference does not always exist for all routes
 - in case of their existence, all such routes cannot be selected without conflict
 - the customized router is based on delay report of Xilinx tools
 - worst-case simulation results
 - diverse/different in practice due to process variations
 - measuring such device-specific delay differences is in progress

Thanks! Any questions?

amir.moradi@rub.de

Embedded Security Group, Ruhr University Bochum, Germany

hgi Lehrstuhl für Embedded Security