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RNG

RNGs (Random number generators) are 

used in cryptography to

 initialize keys,

 seed pseudo-random number generators,

 help in generating digital signature

 …

RNG security is crucial for cryptographic 

systems
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TRNG Security

 How to make sure a true (physical) RNG is secure?

 Providing a reasonable mathematical model based on some 

physical assumptions

 Figuring out the precise/minimum/maximum entropy

 Confirming the sufficiency of the calculated entropy

 Not a easy work

 Ideal physical assumption is not usually practical or is hard to 

be proved.

 white noise vs. correlated noise

 independent ring oscillators vs. coupled ring oscillators 

 Entropy estimation is complex though the design structure is 

simple

 from noises to random bits, bit correlation
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Our work

 Proposing a new modeling method to calculate a precise 

entropy for oscillator-based TRNGs

 Designing a jitter measuring circuit to acquire critical 

parameters and also verify the theoretical results

 Performing a comprehensive study on the effect of 

deterministic perturbations
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Oscillator-based TRNG

 How a random bit is generated

 Randomness is (accumulated) jitter. The cycle 

number of fast oscillator signal is random 

/unpredictable during the period of the slow clock

 More precisely, how many half-cycles/edges

 𝐵𝑖 = 𝐵𝑖−1⊕(𝑅𝑖 mod 2), 𝑅𝑖 represents the number of 

edges

 The xor operation with the last bit has no impact on the 

information entropy, so we take  𝐵𝑖 = 𝑅𝑖 mod 2.
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Model Setup

 Half-period: 𝑋𝑘, mean 𝜇, variance 𝜎2

 Sampling interval: 𝑠 = 𝑣𝜇， 𝑟 = 𝑣 mod 1 (fractional part)
Prob(𝑅𝑖 = 𝑘 + 1) = Prob(𝑇𝑘 ≤ 𝑠) − Prob(𝑇𝑘+1 ≤ 𝑠)

(𝑇𝑘 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑘)
𝑇𝑘 − 𝑘𝜇

𝜎 𝑘
→ 𝑁 0,1 , 𝑘 → ∞ (CLT)

= 𝛷((𝑣 − 𝑘) ⋅
𝜇

𝜎 𝑘
) − 𝛷((𝑣 − 𝑘 − 1) ⋅

𝜇

𝜎 𝑘 + 1
)

Prob 𝐵𝑖 = 1 = 
𝑗=1

∞

Prob 𝑅𝑖 = 2𝑗 − 1
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One-time sampling: model approximation

 Physical assumption: small jitter

Prob 𝑅𝑖 = 𝑘 + 1

≈ 𝛷((𝑣 − 𝑘) ⋅
𝜇

𝜎 𝑘
) − 𝛷((𝑣 − 𝑘 − 1) ⋅

𝜇

𝜎 𝑘 + 1
)

by defining 𝑞 =
𝜎 𝑣

𝜇
(Quality Factor)

≈ 𝛷
𝑣 − 𝑘

𝑞
−𝛷
𝑣 − 𝑘 − 1

𝑞
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1/q

010101010101

r/q

Understanding

Prob 𝑅𝑖 = 𝑘 + 1 ≈ 𝛷
𝑣 − 𝑘

𝑞
− 𝛷
𝑣 − 𝑘 − 1

𝑞

 In one-time sampling, the phase difference is set to 0. 

 The area (equaling to 1) is divided at 1/q interval.

 The area of each column corresponds to the probability of 𝑅𝑖
equaling to each 𝑘.

 The larger q is, the finer the column is divided, which means that the 

areas of ‘0’ and ‘1’ are closer.

 Besides q, the value of r also affects the bias of the sampling bit.
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Consecutive sampling: waiting time

 𝑊𝑖：the distance of the ith sampling position to the 

following closest edge [Killmann et al. CHES 2008]

 In consecutive sampling, two adjacent sampling 

processes are dependent, as the waiting time 𝑊𝑖
generated by the ith sampling affects the next one.

 𝐵𝑖 → 𝑊𝑖 → 𝐵𝑖+1
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𝑊𝑖 probability distribution

 Referring to renewal theory (i.i.d. assumption):

P𝑊 𝑦 = Prob 𝑊𝑖 ≤ 𝑦 =
1

𝜇
 
0

𝑦

1 − 𝑃𝑋 𝑢 𝑑𝑢，𝑠 → ∞

 Due to 𝜎 ≪ 𝜇 (small jitter), P𝑊 𝑦 approximates to a 

uniform distribution of [0,𝜇]

Prob 𝑊𝑖 ≤ 𝑦 ≈

1
𝜇
 
0

𝑦

1𝑑𝑢 =
𝑦
𝜇
, 0 ≤ 𝑦 ≤ 𝜇

1, 𝑦 > 𝜇
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 No matter what 𝑏𝑖 is,𝑊𝑖 is always a uniform distribution.

∀𝑏𝑖 ∈ {0,1}, Prob(𝑊𝑖 ≤ 𝑥|𝑏𝑖) = Prob(𝑊𝑖 ≤ 𝑥) =
𝑥

𝜇

→ 𝑞 > 0.6

 Observation: when q is approximately larger than 0.6, the 

distribution becomes uniform and the correlation is almost 

eliminated. 

 Only observation is not 

enough, precise entropy

is needed. 

Independence Condition
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Entropy Calculation

Bit-rate entropy 𝐻 = 𝐻𝑛/𝑛

𝐻𝑛 =  

𝐛𝐧∈ 0,1
𝑛

−𝑝 𝐛𝐧 log𝑝 𝐛𝐧

𝑝(𝐛𝐧) = Prob(𝑏𝑛, … , 𝑏1) = 

𝑖=1

𝑛

𝐾 (𝑏𝑖)

)𝐾(𝑏𝑖) = Prob(𝑏𝑖|𝑏𝑖−1, . . . , 𝑏1
 The goal is calculating the probability of 𝑏𝑖 in the 

condition of knowing the previous bits. 

 Method: using the waiting time 𝑊𝑖 to represent the 

relationship and then eliminating 𝑊𝑖
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Entropy Calculation

Basic function 1:

Prob 𝑏𝑖+1 𝑤𝑖 = 

𝑖=−∞

+∞

𝛷
2𝑖 + 1 − 𝑐𝑖
𝑞

− 𝛷
2𝑖 − 𝑐𝑖
𝑞

:= 𝐽𝑖+1(𝑤𝑖)
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Entropy Calculation

Basic function 2:

Prob 𝑊𝑖+1 ≤ 𝑥, 𝑏𝑖+1 𝑤𝑖 = 

𝑖=−∞

+∞

𝛷
2𝑖 + 1 − 𝑐𝑖

𝑞
− 𝛷
2𝑖 − 𝑐𝑖 + 1 − 𝑥

𝑞

: = 𝐹𝑖+1 𝑥, 𝑤𝑖

15

si

si+1

xWi

ideal

x xx x x



Entropy Calculation

 The property of the Markov process

Prob 𝑏𝑖 𝑤𝑖−1, 𝑏𝑖−1,𝑤𝑖−2, 𝑏𝑖−2,… = Prob(𝑏𝑖|𝑤𝑖−1)

 From i = 1 to n for a pattern {𝑏𝑛, … , 𝑏1}, by iterating 

)𝐺𝑖(𝑥):= Prob(𝑊𝑖 ≤ 𝑥|𝑏𝑖 , … , 𝑏1 =  

0

1
)𝐹𝑖(𝑥, 𝑦

)𝐾(𝑏𝑖
𝐺𝑖−1(𝑑𝑦)

𝐾 𝑏𝑖+1 =  
0

1

𝐽𝑖+1 𝑥 𝑑𝐺𝑖 𝑥

 Especially, 

𝐺1 𝑥 =  

0

1
)𝐹1(𝑥, 𝑤0
)𝐽1(𝑤0
𝑑𝑤0

16



Entropy Evaluation

 For different 𝑞 =
𝑠

𝜇
∙
𝜎

𝜇

 The best (worst) performance occurs in r=0.5 (r=0).

r is the fractional part of 𝑠/𝜇
 Maximum entropy and minimum entropy

 The oscillator frequency is so high that r is hard to 

adjust. 

 A robust TRNG design should have sufficient 

entropy even in the worst (most unbiased) case.
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How to acquire q

External measurement

 needs high-precision oscilloscope to 

measure jitter

 output circuit also causes jitter

 Inner measurement

 convenient and reliable

 can be embedded into hardware for online or 

inner test
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Experiment Design

 Dual-counter measurement circuit: counting the number 

of edges of fast oscillator signal

 Clear mechanism
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Calculating q

 Counting is a (delayed) renewal process. The variance 

of counting results is 

𝑠  𝜎2 𝜇3 + 𝑜 𝑠 = 𝑞2 + 𝑜 𝑠 , 𝑜 𝑠 → 0 when 𝑠 → ∞

 The clear mechanism guarantees

 after getting numbers of count results in the duration of s, we sum 

the m non-overlapping results to obtain the number of edges in the 

duration of m*s

 only one-time counting is needed for acquire the (approximated) q

values under different sampling intervals
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Measurement Results

 The overestimation decreases with the sampling interval 

increasing.

 Deterministic jitter exists!
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 The deterministic perturbation is global.

 Using another RO to measure the fast RO signal to filter 

deterministic jitter. [Fischer, et al., FPL 2008 ]

 The existence of correlated noise

 dominant in low frequency, but 

sight in the concerned region

(q around 1)

 does not degrade sampling bit 

quality when accumulated 

independent jitter is sufficient

 Basic experimental data for

verification

Dual-RO Measuring
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Parameters for Sufficient Entropy
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 Simulation for required q

 Theoretical entropy: H>0.9999 (stricter)

 Sampling sequence: passing FIPS 140-2

 The required q values are close

 The variation tendencies for q values are 

consistent

 When r=0.5 the balance is always satisfied, so, once the 

independence condition is achieved, the entropy is 

sufficient and the sequence can pass the test.



Parameters for Sufficient Entropy
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 FPGA

 passing ratio vs. standard variance: 𝑞 ∈ 0.8936,0.9389

 It seems infeasible to measure the right r at this point to do a 

further verification. 

 A tiny measuring error will make the measured r totally 

different in such a high frequency of the fast oscillator signal.

 Correlated noise makes an overestimation for independent 

jitter, especially when m is large.



Effect of Deterministic Perturbations

making it easier to pass statistical tests

 from m=11 to m=9 

 enlarging the amount of estimated randomness jitter
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Bound for Randomness Improvement

 With the strength of the perturbation increasing , the 

passing position does not move up any more after m = 6 

(q = 0.68), consistent with the independence condition.

 Perturbation causes little impact on the correlation but 

improve the balance of random bits
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Predicting the “Random” Bits

Under deterministic perturbations

 for a sequence, the statistical property is satisfied

 but, for each bit, the entropy might be insufficient

 making the prediction of each bit probability possible

 Simulation: by previously knowing the precise 

design parameters and the function of the 

deterministic perturbation
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Conclusion 

 An entropy estimation method is provided, which is well 

consistent with experiment.

 helpful for designers to determine the theoretical fastest 

sampling frequency (r=0.5) and secure frequency (r=0).

 helpful for verifiers to calculate the entropy of given TRNG 

parameters.

 A simple quality factor extraction circuit is designed.

 Embedded into hardware for online tests

 A higher precision can be obtained by “filtering” correlated jitter 

and deriving from the result with long interval. 

 Detection of deterministic perturbations or even attacks.

 The accumulated independent jitter should be sufficient.
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Thanks!
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