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RNG

RNGs (Random number generators) are 

used in cryptography to

 initialize keys,

 seed pseudo-random number generators,

 help in generating digital signature

 …

RNG security is crucial for cryptographic 

systems
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TRNG Security

 How to make sure a true (physical) RNG is secure?

 Providing a reasonable mathematical model based on some 

physical assumptions

 Figuring out the precise/minimum/maximum entropy

 Confirming the sufficiency of the calculated entropy

 Not a easy work

 Ideal physical assumption is not usually practical or is hard to 

be proved.

 white noise vs. correlated noise

 independent ring oscillators vs. coupled ring oscillators 

 Entropy estimation is complex though the design structure is 

simple

 from noises to random bits, bit correlation
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Our work

 Proposing a new modeling method to calculate a precise 

entropy for oscillator-based TRNGs

 Designing a jitter measuring circuit to acquire critical 

parameters and also verify the theoretical results

 Performing a comprehensive study on the effect of 

deterministic perturbations
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Oscillator-based TRNG

 How a random bit is generated

 Randomness is (accumulated) jitter. The cycle 

number of fast oscillator signal is random 

/unpredictable during the period of the slow clock

 More precisely, how many half-cycles/edges

 𝐵𝑖 = 𝐵𝑖−1⊕(𝑅𝑖 mod 2), 𝑅𝑖 represents the number of 

edges

 The xor operation with the last bit has no impact on the 

information entropy, so we take  𝐵𝑖 = 𝑅𝑖 mod 2.
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Model Setup

 Half-period: 𝑋𝑘, mean 𝜇, variance 𝜎2

 Sampling interval: 𝑠 = 𝑣𝜇， 𝑟 = 𝑣 mod 1 (fractional part)
Prob(𝑅𝑖 = 𝑘 + 1) = Prob(𝑇𝑘 ≤ 𝑠) − Prob(𝑇𝑘+1 ≤ 𝑠)

(𝑇𝑘 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑘)
𝑇𝑘 − 𝑘𝜇

𝜎 𝑘
→ 𝑁 0,1 , 𝑘 → ∞ (CLT)

= 𝛷((𝑣 − 𝑘) ⋅
𝜇

𝜎 𝑘
) − 𝛷((𝑣 − 𝑘 − 1) ⋅

𝜇

𝜎 𝑘 + 1
)

Prob 𝐵𝑖 = 1 = 
𝑗=1

∞

Prob 𝑅𝑖 = 2𝑗 − 1
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One-time sampling: model approximation

 Physical assumption: small jitter

Prob 𝑅𝑖 = 𝑘 + 1

≈ 𝛷((𝑣 − 𝑘) ⋅
𝜇

𝜎 𝑘
) − 𝛷((𝑣 − 𝑘 − 1) ⋅

𝜇

𝜎 𝑘 + 1
)

by defining 𝑞 =
𝜎 𝑣

𝜇
(Quality Factor)

≈ 𝛷
𝑣 − 𝑘

𝑞
−𝛷
𝑣 − 𝑘 − 1

𝑞
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1/q

010101010101

r/q

Understanding

Prob 𝑅𝑖 = 𝑘 + 1 ≈ 𝛷
𝑣 − 𝑘

𝑞
− 𝛷
𝑣 − 𝑘 − 1

𝑞

 In one-time sampling, the phase difference is set to 0. 

 The area (equaling to 1) is divided at 1/q interval.

 The area of each column corresponds to the probability of 𝑅𝑖
equaling to each 𝑘.

 The larger q is, the finer the column is divided, which means that the 

areas of ‘0’ and ‘1’ are closer.

 Besides q, the value of r also affects the bias of the sampling bit.
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Consecutive sampling: waiting time

 𝑊𝑖：the distance of the ith sampling position to the 

following closest edge [Killmann et al. CHES 2008]

 In consecutive sampling, two adjacent sampling 

processes are dependent, as the waiting time 𝑊𝑖
generated by the ith sampling affects the next one.

 𝐵𝑖 → 𝑊𝑖 → 𝐵𝑖+1
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𝑊𝑖 probability distribution

 Referring to renewal theory (i.i.d. assumption):

P𝑊 𝑦 = Prob 𝑊𝑖 ≤ 𝑦 =
1

𝜇
 
0

𝑦

1 − 𝑃𝑋 𝑢 𝑑𝑢，𝑠 → ∞

 Due to 𝜎 ≪ 𝜇 (small jitter), P𝑊 𝑦 approximates to a 

uniform distribution of [0,𝜇]

Prob 𝑊𝑖 ≤ 𝑦 ≈

1
𝜇
 
0

𝑦

1𝑑𝑢 =
𝑦
𝜇
, 0 ≤ 𝑦 ≤ 𝜇

1, 𝑦 > 𝜇
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 No matter what 𝑏𝑖 is,𝑊𝑖 is always a uniform distribution.

∀𝑏𝑖 ∈ {0,1}, Prob(𝑊𝑖 ≤ 𝑥|𝑏𝑖) = Prob(𝑊𝑖 ≤ 𝑥) =
𝑥

𝜇

→ 𝑞 > 0.6

 Observation: when q is approximately larger than 0.6, the 

distribution becomes uniform and the correlation is almost 

eliminated. 

 Only observation is not 

enough, precise entropy

is needed. 

Independence Condition
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Entropy Calculation

Bit-rate entropy 𝐻 = 𝐻𝑛/𝑛

𝐻𝑛 =  

𝐛𝐧∈ 0,1
𝑛

−𝑝 𝐛𝐧 log𝑝 𝐛𝐧

𝑝(𝐛𝐧) = Prob(𝑏𝑛, … , 𝑏1) = 

𝑖=1

𝑛

𝐾 (𝑏𝑖)

)𝐾(𝑏𝑖) = Prob(𝑏𝑖|𝑏𝑖−1, . . . , 𝑏1
 The goal is calculating the probability of 𝑏𝑖 in the 

condition of knowing the previous bits. 

 Method: using the waiting time 𝑊𝑖 to represent the 

relationship and then eliminating 𝑊𝑖
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Entropy Calculation

Basic function 1:

Prob 𝑏𝑖+1 𝑤𝑖 = 

𝑖=−∞

+∞

𝛷
2𝑖 + 1 − 𝑐𝑖
𝑞

− 𝛷
2𝑖 − 𝑐𝑖
𝑞

:= 𝐽𝑖+1(𝑤𝑖)
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Entropy Calculation

Basic function 2:

Prob 𝑊𝑖+1 ≤ 𝑥, 𝑏𝑖+1 𝑤𝑖 = 

𝑖=−∞

+∞

𝛷
2𝑖 + 1 − 𝑐𝑖

𝑞
− 𝛷
2𝑖 − 𝑐𝑖 + 1 − 𝑥

𝑞

: = 𝐹𝑖+1 𝑥, 𝑤𝑖
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Entropy Calculation

 The property of the Markov process

Prob 𝑏𝑖 𝑤𝑖−1, 𝑏𝑖−1,𝑤𝑖−2, 𝑏𝑖−2,… = Prob(𝑏𝑖|𝑤𝑖−1)

 From i = 1 to n for a pattern {𝑏𝑛, … , 𝑏1}, by iterating 

)𝐺𝑖(𝑥):= Prob(𝑊𝑖 ≤ 𝑥|𝑏𝑖 , … , 𝑏1 =  

0

1
)𝐹𝑖(𝑥, 𝑦

)𝐾(𝑏𝑖
𝐺𝑖−1(𝑑𝑦)

𝐾 𝑏𝑖+1 =  
0

1

𝐽𝑖+1 𝑥 𝑑𝐺𝑖 𝑥

 Especially, 

𝐺1 𝑥 =  

0

1
)𝐹1(𝑥, 𝑤0
)𝐽1(𝑤0
𝑑𝑤0
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Entropy Evaluation

 For different 𝑞 =
𝑠

𝜇
∙
𝜎

𝜇

 The best (worst) performance occurs in r=0.5 (r=0).

r is the fractional part of 𝑠/𝜇
 Maximum entropy and minimum entropy

 The oscillator frequency is so high that r is hard to 

adjust. 

 A robust TRNG design should have sufficient 

entropy even in the worst (most unbiased) case.
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How to acquire q

External measurement

 needs high-precision oscilloscope to 

measure jitter

 output circuit also causes jitter

 Inner measurement

 convenient and reliable

 can be embedded into hardware for online or 

inner test
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Experiment Design

 Dual-counter measurement circuit: counting the number 

of edges of fast oscillator signal

 Clear mechanism
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Calculating q

 Counting is a (delayed) renewal process. The variance 

of counting results is 

𝑠  𝜎2 𝜇3 + 𝑜 𝑠 = 𝑞2 + 𝑜 𝑠 , 𝑜 𝑠 → 0 when 𝑠 → ∞

 The clear mechanism guarantees

 after getting numbers of count results in the duration of s, we sum 

the m non-overlapping results to obtain the number of edges in the 

duration of m*s

 only one-time counting is needed for acquire the (approximated) q

values under different sampling intervals
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Measurement Results

 The overestimation decreases with the sampling interval 

increasing.

 Deterministic jitter exists!
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 The deterministic perturbation is global.

 Using another RO to measure the fast RO signal to filter 

deterministic jitter. [Fischer, et al., FPL 2008 ]

 The existence of correlated noise

 dominant in low frequency, but 

sight in the concerned region

(q around 1)

 does not degrade sampling bit 

quality when accumulated 

independent jitter is sufficient

 Basic experimental data for

verification

Dual-RO Measuring
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Parameters for Sufficient Entropy
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 Simulation for required q

 Theoretical entropy: H>0.9999 (stricter)

 Sampling sequence: passing FIPS 140-2

 The required q values are close

 The variation tendencies for q values are 

consistent

 When r=0.5 the balance is always satisfied, so, once the 

independence condition is achieved, the entropy is 

sufficient and the sequence can pass the test.



Parameters for Sufficient Entropy
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 FPGA

 passing ratio vs. standard variance: 𝑞 ∈ 0.8936,0.9389

 It seems infeasible to measure the right r at this point to do a 

further verification. 

 A tiny measuring error will make the measured r totally 

different in such a high frequency of the fast oscillator signal.

 Correlated noise makes an overestimation for independent 

jitter, especially when m is large.



Effect of Deterministic Perturbations

making it easier to pass statistical tests

 from m=11 to m=9 

 enlarging the amount of estimated randomness jitter
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Bound for Randomness Improvement

 With the strength of the perturbation increasing , the 

passing position does not move up any more after m = 6 

(q = 0.68), consistent with the independence condition.

 Perturbation causes little impact on the correlation but 

improve the balance of random bits
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Predicting the “Random” Bits

Under deterministic perturbations

 for a sequence, the statistical property is satisfied

 but, for each bit, the entropy might be insufficient

 making the prediction of each bit probability possible

 Simulation: by previously knowing the precise 

design parameters and the function of the 

deterministic perturbation
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Conclusion 

 An entropy estimation method is provided, which is well 

consistent with experiment.

 helpful for designers to determine the theoretical fastest 

sampling frequency (r=0.5) and secure frequency (r=0).

 helpful for verifiers to calculate the entropy of given TRNG 

parameters.

 A simple quality factor extraction circuit is designed.

 Embedded into hardware for online tests

 A higher precision can be obtained by “filtering” correlated jitter 

and deriving from the result with long interval. 

 Detection of deterministic perturbations or even attacks.

 The accumulated independent jitter should be sufficient.
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Thanks!
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