Entropy Evaluation for Oscillator-based True Random Number Generators

Yuan Ma

DCS Center Institute of Information Engineering Chinese Academy of Sciences

Outline

DRNG

- Modeling method
- **D**Experiment
- Entropy evaluation
- On the external perturbation

RNGs (Random number generators) are used in cryptography to

- initialize keys,
- seed pseudo-random number generators,
- help in generating digital signature

•

RNG security is crucial for cryptographic systems

TRNG Security

□ How to make sure a true (physical) RNG is secure?

- Providing a reasonable mathematical model based on some physical assumptions
- Figuring out the precise/minimum/maximum entropy
- Confirming the sufficiency of the calculated entropy
- □ Not a easy work
 - Ideal physical assumption is not usually practical or is hard to be proved.
 - white noise vs. correlated noise
 - independent ring oscillators vs. coupled ring oscillators
 - Entropy estimation is complex though the design structure is simple
 - from noises to random bits, bit correlation

Our work

- Proposing a new modeling method to calculate a precise entropy for oscillator-based TRNGs
- Designing a jitter measuring circuit to acquire critical parameters and also verify the theoretical results
- Performing a comprehensive study on the effect of deterministic perturbations

Oscillator-based TRNG

How a random bit is generated

- Randomness is (accumulated) jitter. The cycle number of fast oscillator signal is random /unpredictable during the period of the slow clock
- More precisely, how many half-cycles/edges
- $B_i = B_{i-1} \bigoplus (R_i \mod 2), R_i$ represents the number of edges
- □ The xor operation with the last bit has no impact on the information entropy, so we take $B_i = R_i \mod 2$.

Model Setup

\square Half-period: X_k , mean μ , variance σ^2

□ Sampling interval: $s = v\mu$, $r = v \mod 1$ (fractional part) Prob $(R_i = k + 1) = \operatorname{Prob}(T_k \le s) - \operatorname{Prob}(T_{k+1} \le s)$ $(T_k = X_1 + X_2 + \dots + X_k)$ $\frac{T_k - k\mu}{\sigma\sqrt{k}} \rightarrow N(0,1), k \rightarrow \infty \text{ (CLT)}$ $= \Phi((v - k) \cdot \frac{\mu}{\sigma\sqrt{k}}) - \Phi((v - k - 1) \cdot \frac{\mu}{\sigma\sqrt{k+1}})$ Prob $(B_i = 1) = \sum_{j=1}^{\infty} \operatorname{Prob}(R_i = 2j - 1)$

From Killmann, et al. CHES 2008

One-time sampling: model approximation

□ Physical assumption: small jitter Prob($R_i = k + 1$) $\approx \Phi((v - k) \cdot \frac{\mu}{\sigma\sqrt{k}}) - \Phi((v - k - 1) \cdot \frac{\mu}{\sigma\sqrt{k + 1}})$ by defining $q = \frac{\sigma\sqrt{v}}{\mu}$ (Quality Factor) $\approx \Phi\left(\frac{v - k}{q}\right) - \Phi\left(\frac{v - k - 1}{q}\right)$

Understanding

$$\operatorname{Prob}(R_i = k+1) \approx \Phi\left(\frac{v-k}{q}\right) - \Phi\left(\frac{v-k-1}{q}\right)$$

- □ In one-time sampling, the phase difference is set to 0.
- □ The area (equaling to 1) is divided at 1/q interval.
- □ The area of each column corresponds to the probability of R_i equaling to each k.
- The larger q is, the finer the column is divided, which means that the areas of '0' and '1' are closer.
- Besides q, the value of r also affects the bias of the sampling bit.

9

Consecutive sampling: waiting time

- \square W_i : the distance of the ith sampling position to the following closest edge [Killmann et al. CHES 2008]
- In consecutive sampling, two adjacent sampling processes are dependent, as the waiting time W_i generated by the ith sampling affects the next one.

$$\square B_i \to W_i \to B_{i+1}$$

W_i probability distribution

□ Referring to renewal theory (i.i.d. assumption):

$$P_W(y) = \operatorname{Prob}(W_i \le y) = \frac{1}{\mu} \int_0^y (1 - P_X(u)) du \, , \ s \to \infty$$

□ Due to $\sigma \ll \mu$ (small jitter), $P_W(y)$ approximates to a uniform distribution of $[0,\mu]$

$$\operatorname{Prob}(W_i \le y) \approx \begin{cases} \frac{1}{\mu} \int_0^y 1 du = \frac{y}{\mu}, 0 \le y \le \mu \\ 1, \quad y > \mu \end{cases}$$

Independence Condition

D No matter what b_i is, W_i is always a uniform distribution.

$$\forall b_i \in \{0,1\}, \operatorname{Prob}(W_i \le x | b_i) = \operatorname{Prob}(W_i \le x) = \frac{x}{\mu}$$

 $\rightarrow q > 0.6$

- Observation: when q is approximately larger than 0.6, the distribution becomes uniform and the correlation is almost eliminated.
- Only observation is not enough, precise entropy is needed.

Bit-rate entropy $H = H_n/n$ $H_n = \sum_{\mathbf{b_n} \in \{0,1\}^n} -p(\mathbf{b_n}) \log p(\mathbf{b_n})$ $p(\mathbf{b_n}) = \operatorname{Prob}(b_n, \dots, b_1) = \prod_{i=1}^n K(b_i)$ $K(b_i) = \operatorname{Prob}(b_i | b_{i-1}, \dots, b_1)$

- □ The goal is calculating the probability of b_i in the condition of knowing the previous bits.
- □ Method: using the waiting time W_i to represent the relationship and then eliminating W_i

DBasic function 2: $Prob(W_{i+1} \le x, b_{i+1}|w_i) = \sum_{i=-\infty}^{+\infty} \left(\phi\left(\frac{2i+1-c_i}{q}\right) - \phi\left(\frac{2i-c_i+1-x}{q}\right) \right)$ $:= F_{i+1}(x, w_i)$

□ The property of the Markov process $Prob(b_i|w_{i-1}, b_{i-1}, w_{i-2}, b_{i-2}, ...) = Prob(b_i|w_{i-1})$ □ From *i* = 1 to *n* for a pattern {*b_n*, ..., *b₁*}, by iterating

$$G_{i}(x) := \operatorname{Prob}(W_{i} \le x | b_{i}, \dots, b_{1}) = \int_{0}^{1} \frac{F_{i}(x, y)}{K(b_{i})} G_{i-1}(dy)$$

$$K(b_{i+1}) = \int_{0}^{1} J_{i+1}(x) dG_{i}(x)$$

□ Especially,

$$G_1(x) = \int_0^1 \frac{F_1(x, w_0)}{J_1(w_0)} dw_0$$

Entropy Evaluation

- The best (worst) performance occurs in r=0.5 (r=0). r is the fractional part of s/μ
- Maximum entropy and minimum entropy
- The oscillator frequency is so high that r is hard to adjust.
- A robust TRNG design should have sufficient entropy even in the worst (most unbiased) case.

How to acquire q

□ External measurement

- needs high-precision oscilloscope to measure jitter
- output circuit also causes jitter
- □Inner measurement
 - convenient and reliable
 - can be embedded into hardware for online or inner test

Experiment Design

Dual-counter measurement circuit: counting the number of edges of fast oscillator signal

□ Clear mechanism

Calculating q

- □ Counting is a (delayed) renewal process. The variance of counting results is $s(\sigma^2/\mu^3) + o(s) = q^2 + o(s), o(s) \rightarrow 0$ when $s \rightarrow \infty$
- □ The clear mechanism guarantees
- after getting numbers of count results in the duration of s, we sum the m non-overlapping results to obtain the number of edges in the duration of m*s
- only one-time counting is needed for acquire the (approximated) q values under different sampling intervals

Measurement Results

(a) Simulation results with white noises (b) Practical measuring results in FPGA

- The overestimation decreases with the sampling interval increasing.
- Deterministic jitter exists!

Dual-RO Measuring

- □ The deterministic perturbation is global.
- Using another RO to measure the fast RO signal to filter deterministic jitter. [Fischer, et al., FPL 2008]
- The existence of correlated noise
 - dominant in low frequency, but sight in the concerned region (q around 1)
 - does not degrade sampling bit be 10°
 quality when accumulated
 independent jitter is sufficient
- Basic experimental data for verification

Parameters for Sufficient Entropy

- □ Simulation for required q
 - Theoretical entropy: H>0.9999 (stricter)
 - Sampling sequence: passing FIPS 140-2
- □ The required q values are close
- The variation tendencies for q values are consistent

Table 1. The required q to achieve sufficient entropy for different r

r Req. q	r=0	r=0.1 (0.9)	r=0.2 (0.8)	$\binom{r=0.3}{(0.7)}$	r=0.4 (0.6)	r=0.5	Remark
Theory	0.9264	0.9209	0.9029	0.8673	0.7895	0.6511	H > 0.9999
Sim. Measured	0.9778	0.9392	0.9198	0.8759	0.7928	0.7002	passing FIPS 140-2

When r=0.5 the balance is always satisfied, so, once the independence condition is achieved, the entropy is sufficient and the sequence can pass the test.

Parameters for Sufficient Entropy

D FPGA

- passing ratio vs. standard variance: $q \in [0.8936, 0.9389]$
- It seems infeasible to measure the right r at this point to do a further verification.
- A tiny measuring error will make the measured r totally different in such a high frequency of the fast oscillator signal.
- Correlated noise makes an overestimation for independent jitter, especially when m is large.

Effect of Deterministic Perturbations

making it easier to pass statistical tests

■ from m=11 to m=9

enlarging the amount of estimated randomness jitter

Bound for Randomness Improvement

- With the strength of the perturbation increasing , the passing position does not move up any more after m = 6 (q = 0.68), consistent with the independence condition.
- Perturbation causes little impact on the correlation but improve the balance of random bits

Predicting the "Random" Bits

Under deterministic perturbations

- for a sequence, the statistical property is satisfied
- but, for each bit, the entropy might be insufficient
- making the prediction of each bit probability possible
- Simulation: by previously knowing the precise design parameters and the function of the deterministic perturbation

Conclusion

An entropy estimation method is provided, which is well consistent with experiment.

- helpful for designers to determine the theoretical fastest sampling frequency (r=0.5) and secure frequency (r=0).
- helpful for verifiers to calculate the entropy of given TRNG parameters.
- □ A simple quality factor extraction circuit is designed.
 - Embedded into hardware for online tests
 - A higher precision can be obtained by "filtering" correlated jitter and deriving from the result with long interval.
 - Detection of deterministic perturbations or even attacks.
- □ The accumulated independent jitter should be sufficient.

Entropy Evaluation for Oscillator-based True Random Number Generators

★圈斜学院信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING,CAS

