Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG

Viktor FISCHER
Jean Monnet University Saint-Etienne, France

David LUBICZ DGA-Maitrise de l'information, France Université de Rennes 1, Rennes, France

CHES 2014 - Busan, Korea

Random Numbers in Cryptography

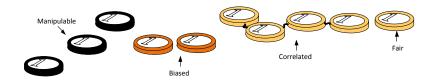
- Random number generators constitute an essential part of (hardware) cryptographic modules
- They generate random numbers that are used as:
 - Cryptographic keys
 - Masks in countermeasures against side channel attacks
 - Initialization vectors, nonces, padding values, ...

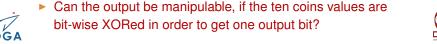
Classical versus Modern TRNG Design Approach

- Two main security requirements on RNGs:
 - R1: Good statistical properties of the output bitstream
 - R2: Output unpredictability
- Classical approach:
 - Assess both requirements using statistical tests often impossible
- Modern ways of assessing security:
 - Evaluate statistical parameters using statistical tests
 - Evaluate entropy using entropy estimator (stochastic model)
 - Test online the source of entropy using dedicated statistical tests

Our objectives

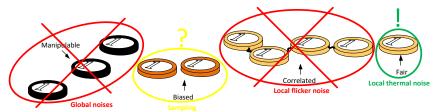
Propose jitter measurement method that can be

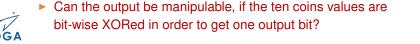

- Easily embedded in logic devices
- Used for entropy assessment based on existing stochastic model ^a


^aM. Baudet *et al.*, On the Security of Oscillator-Based

Random Number Generators, Journal of Cryptology, 2011

Tossing (Partially) Unfair Coins – Realistic TRNG


- How much entropy per trial, if:
 - One (independent) fair coin
 - Four correlated coins
 - Two biased coins
 - Three manipulable coins
- bit-wise XORed in order to get one output bit?



Tossing (Partially) Unfair Coins - Realistic TRNG

In the context of oscillator based TRNG:

- How much entropy per trial, if:
 - One (independent) fair coin
 - Four correlated coins
 - Two biased coins
 - Three manipulable coins
- Can the output be manipulable, if the ten coins values are bit-wise XORed in order to get one output bit?

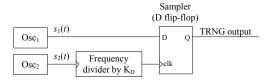
Outline

- Elementary oscillator-based TRNG
 - Principle
 - Properties of the clock signals
- Embedded jitter measurement
 - Principle
 - Evaluation of the method by simulations
 - Hardware implementation
 - Evaluation of the jitter measurement in hardware
- Entropy management using stochastic model and jitter measurement
 - Simplified jitter measurement
 - Model-based embedded entropy management
 - Discussion
 - Evaluation of the method by attacks

Conclusions

Outline

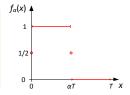
- Principle
- Properties of the clock signals
- - Principle
 - Evaluation of the method by simulations
 - Hardware implementation
 - Evaluation of the jitter measurement in hardware
- - Simplified jitter measurement


 - Evaluation of the method by attacks

Elementary oscillator based TRNG

▶ Principle

where


- $s_i(t) = f(\omega_i(t + \xi_i(t))), i = 1, 2$ are two jittery clock signals,
- ω_1 and ω_2 are their mean frequencies,
- $\xi_1(t)$ and $\xi_2(t)$ represent their absolute phase drifts,
- $\zeta = \omega_1/\omega_2$ is the relative mean frequency.

Function f_{α} – specific T-periodic function

$$ightharpoonup f_{\alpha}(x) = 1$$
 for all $0 < x < \alpha T$

$$ightharpoonup f_{\alpha}(x) = 0$$
 for all $\alpha T < x < T$

$$f_{\alpha}(0) = f_{\alpha}(\alpha T) = 1/2$$

Assumed properties of the clock signals 1/2

- Osc_1 is a perfectly stable oscillator ($\xi_1 = 0$)
- All the phase drift comes from *Osc*₂, we want to characterize the phase jitter $\xi_2 = \xi$
- According to Baudet et al. 1, the random walk component of the phase evolution can be modeled by an ergodic stationary Markov process
 - If the Markov process is Gaussian, it is completely determined by the variance $V(\Delta t)$, where $\Delta t = t - t_0$
 - The random walk component is produced by noise sources which affect each transition *independently*, therefore $V(\Delta t) = \sigma_0^2 \Delta t$

¹M. Baudet et al., On the Security of Oscillator-Based Random Number s, Journal of Cryptology, 2011

Assumed properties of the clock signals 22

▶ We consider existence of $1/f^{\beta}$ noises, where $0 < \beta < 2$, as they also contribute to phase jitter

$1/f^{\beta}$ noises are autocorrelated:

- They are not taken into account in the stochastic model used for entropy estimation
- They must not contribute to the size of the measured jitter we wish to measure only the random walk component of the phase evolution

Global noises are manipulable:

 We do not consider the impact of the global noise sources on the jitter measurement – this impact is significantly reduced because of the differential EO TRNG principle

Outline

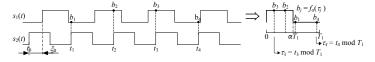
- Principle
- Properties of the clock signals

Embedded jitter measurement

- Principle
- Evaluation of the method by simulations
- Hardware implementation
- Evaluation of the jitter measurement in hardware

- Simplified jitter measurement

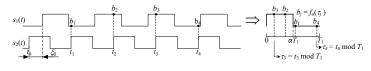
V. FISCHER, D. LUBICZ


- Evaluation of the method by attacks

Principle of the embedded jitter measurement 1/5

- ▶ We wish to measure the variance $V(\Delta t)$ from knowledge of an output bit sequence of an elementary oscillator-based TRNG with $K_D = 1$
- Relation between the sampling process and function $f_{\alpha}(\cdot)$:

where $x_i \mod T_i$ is the modulo operation on real numbers


Principle of the embedded jitter measurement 2/5

Definition of \varepsilon-uniformity:

Distribution of samples $\{(jT_2 - \xi(t_i)) \mod T_1\}_{i \in J}$ is ε-uniform, if for all [a, b]:

$$\Big|\frac{\#\{j\in J|(jT_2-\xi(t_j))\mod T_1\in [a,b]\}}{\#J}-\frac{b-a}{T_1}\Big|<\varepsilon.$$

- Number of samples in interval [a, b] inside the translated period T_1 , over the number of samples in subset J is ε -close to the size of interval [a, b] over period T_1 .
- Recall the right side of the previous figure:

Principle of the embedded jitter measurement 35

Fact 1 (proof given in the paper)

For an ε-uniform set of samples, we define

$$\mathbb{P}_{S_{i_0}}\{b_j \neq b_{j+M}\} = \frac{\#\{j \in S_{i_0}|b_j \neq b_{j+M}\}}{\#S_{i_0}}.$$

▶ If $(MT_2 + \xi(t_{i_0}) - \xi(t_{i_0+M})) \mod T_1 \le \min(\alpha T_1, (1-\alpha)T_1)$ then

$$\left|\mathbb{P}_{\mathcal{S}_{i_0}}\{b_j\neq b_{j+M}\} - \left(\frac{2(MT_2+\xi(t_{i_0})-\xi(t_{i_0+M}))}{T_1} \mod 1\right)\right| < \epsilon,$$

 $\qquad \text{If } (\mathit{MT}_2 + \xi(\mathit{t}_{i_0}) - \xi(\mathit{t}_{i_0 + \mathit{M}})) \ \ \mathsf{mod} \ \mathit{T}_1 \geq \mathsf{max}(\alpha \mathit{T}_1, (1 - \alpha) \mathit{T}_1) \ \mathsf{then}$

$$\left| \mathbb{P}_{\mathcal{S}_{i_0}} \{ b_j \neq b_{j+M} \} + \left(\frac{2(MT_2 + \xi(t_{i_0}) - \xi(t_{i_0+M}))}{T_1} \mod 1 \right) \right| < \epsilon,$$

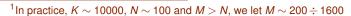
otherwise

$$\left|\mathbb{P}_{\mathcal{S}_{i_0}}\{b_j \neq b_{j+M}\} - 2\min(\alpha, 1-\alpha)\right| < \epsilon.$$

Principle of the embedded jitter measurement 4/5

Algorithm for computing variance V of the jitter

- ▶ **Input**: The output sequence $[b_1, ..., b_n]$ of an elementary TRNG with $K_D = 1$, K, M and N integers 1 .
- ▶ Output: $V_0 = 4V/T_1^2$ where V is the variance of the jitter accumulated during MT_2 .

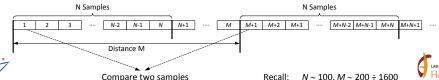

Algorithm 1

for
$$i = 0, ..., K$$
 do
 $S_i \leftarrow [Ni + 1, ..., Ni + N];$
 $c[i] = \mathbb{P}_{S_i}(b_i \neq b_{i+M});$

end for:

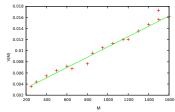
$$V_0 \leftarrow \frac{1}{K} \sum_{i=0}^K c[i]^2 - \left(\frac{1}{K} \sum_{i=0}^K c[i]\right)^2;$$

return: V_0 ;



Principle of the embedded jitter measurement 5/5

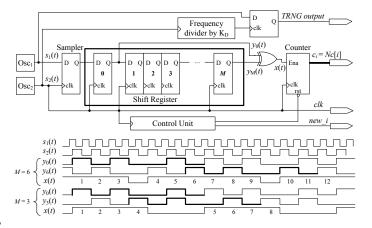
Algorithm 1 – Recall for $i = 0, \dots, K$ do $S_i \leftarrow [Ni+1,\ldots,Ni+N];$ $c[i] = \mathbb{P}_{S_i}(b_i \neq b_{i+M});$ end for: $V_0 \leftarrow \frac{1}{K} \sum_{i=0}^K c[i]^2 - \left(\frac{1}{K} \sum_{i=0}^K c[i]\right)^2$; return: V_0 ;


For all elements from the set S_i compute c[i] =

Evaluation of the method by simulations

- **Objective** recover the jitter size that was indeed introduced to generated clocks, independently from the frequency ratio
- Two clock signals generated: $T_1 = 8923$ ps and $T_2 = 8803$ ps
- Using the rng.pkg package, Gaussian jitter sequences with σ_c = 10 ps, 15 ps, and 20 ps were generated and injected to two clocks
- ► EO TRNG output bit sequences were used for computing the iitter variance
- Error smaller than 5 % was observed

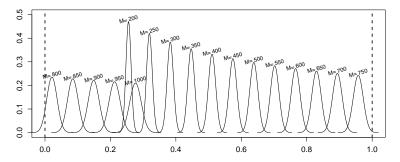
Injected jitter	Calculated slope	σ_{c}/T_{I}	$\sqrt{a}/2$	Error percentage
σ_{c}	а			
10 ps	9.299909 10-6	0.00156	0.00152	2 %
15 ps	2.03211 10 ⁻⁵	0.00234	0.00225	3 %
20 ps	2.03211 10 ⁻⁵	0.00312	0.00297	5 %



EO TRNG Jitter Measurement Embedded testing Conclusions Principle Simulations Implementation Results

Hardware implementation of the jitter measurement 1/3

- Jitter measurement circuitry implemented in two blocks
- The first block computes K successive values c_i = Nc[i]

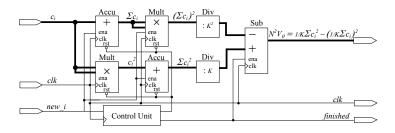


EO TRNG Jitter Measurement Embedded testing Conclusions Principle Simulations Implementation Results

Hardware implementation of the jitter measurement 23

► Important remark:

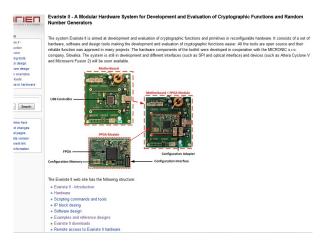
- For some values of M, measured values c_i = Nc[i] are incorrect
 (e. g. for M = 750 and M = 800 in the figure below)
- These values are easy to detect they must not be taken into account in variance computations



Hardware implementation of the jitter measurement 3/3

- Recall: Jitter measurement circuitry implemented in two blocks
- The second block computes the relative variance $4V/T_1^2$ from K values c[i] according to Algorithm 1

Summary: Two accumulators, two multipliers, one subtractor, two divisions by shift right

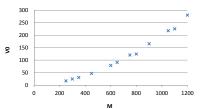


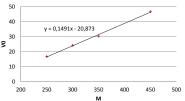
EO TRNG Jitter Measurement Embedded testing Conclusions Principle Simulations Implementation Results

Evaluation of the jitter measurement in hardware 1/2

Evariste II system – A Modular Hardware System for Design and Evaluation of Cryptographic Functions and TRNG (Open-source!)

http://labh-curien.univ-st-etienne.fr/wiki-evariste-ii/index.php/Main_Page





Evaluation of the jitter measurement in hardware 222

- Implementation results in Altera Cyclone III FPGA module
 - The EO TRNG including jitter measurement circuitry with 32-bit data path occupied:
 - 301 logic cells (LEs),
 - up to 450 memory bits,
 - one DSP block 9x9.
 - four DSP blocks 18x18
- Jitter measurement results (250 < M < 1200, $N \sim$ 120 and K = 8192)

• From the slope of the measured V_0 for 250 < M < 450: **Jitter size**: $\sigma = 4.8$ ps per period $T_1 = 7.81$ ns.

ns Jitter measurement Model-based test Discussion Experiments

Outline

- Principle
- Properties of the clock signals
- Embedded jitter measurement
 - Principle
 - Evaluation of the method by simulations
 - Hardware implementation
 - Evaluation of the jitter measurement in hardware
- Entropy management using stochastic model and jitter measurement
 - Simplified jitter measurement
 - Model-based embedded entropy management
 - Discussion
 - Evaluation of the method by attacks

Conclusions

Simplified jitter measurement

- Computing the jitter size from the slope is not suitable for hardware implementation
- Knowing that the dependence in the selected interval is linear, we can measure just one point of the curve, i. e. just one value $V_0 = 4V/T_1^2$ (e. g. for M = 300)
- ► The measured standard deviation was $\sigma_0 = 2\sqrt{V}/T_1 = 5.01$ ps

Important remarks

- The variance should not be computed for values M (not known in advance), whose mean values c[i] are close to zero or one
- If the jitter is sufficiently small compared to the T_1 period, these cases are rare
- Solution: The shift register has several outputs around stage 300 => select M, for which c[i] are close to 0.5

EO TRNG Jitter Measurement Embedded testing Conclusions Jitter measurement Model-based test Discussion Experiments

Model-based embedded entropy management

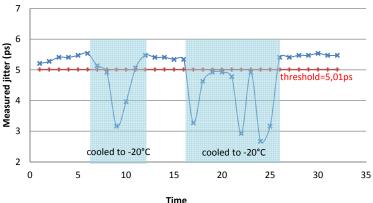
- We can now manage entropy rate at generator output:
 - By entering the known jitter size in the model presented in 1 , we compute the value of frequency divider K_D , to ensure that the entropy per bit is higher than $H_{min} = 0.997$, according to the next expression:

$$\mathcal{K}_{D} = rac{-\ln\left(rac{\pi}{2}\sqrt{\left(1 - H_{min}
ight)\ln(2)}
ight)}{2\pi^{2}rac{T_{2}}{T_{1}}rac{\sigma_{c}^{2}}{T_{1}^{2}}}$$

► For $T_1 = 8.9$ ns, $T_2 = 8.7$ ns, $\sigma_c = 5.01$ ps and $H_{min} = 0.997$, we get $K_D \approx 430\,000$

¹M. Baudet *et al.*, On the Security of Oscillator-Based Random Number enerators, Journal of Cryptology, 2011

Discussion


- ► The jitter measurement circuitry can serve for online testing: for the given K_D , the jitter size σ_c shouldn't drop below 5.01 ps, in order to guarantee sufficient entropy rate at TRNG output
- ► The proposed dedicated test needs $N \cdot K = 120 \cdot 8192 = 1 \cdot 10^6$ periods T_2 to be finished = less then 3 TRNG output bits!
- Tests FIPS 140-1 would need 20,000 TRNG output bits
- We observed that the proposed embedded test is **much more conservative** than the tests FIPS 140-1 – the TRNG output passed these tests (and even the tests NIST SP 800-22) for $K_D > 100,000$ (probably because the flicker noise).
- It is sufficient to put three flip-flops at the TRNG output (delay), in order to get each output bit continuously tested.

Evaluation of the method by attacks

- ► Studied attack jitter reduction by decreasing the temperature
 - The temperature was rapidly changed to −20 °C and left to rise back to 21 °C for several times.

V. FISCHER, D. LUBICZ

Outline

- Elementary oscillator-based TRNG
 - Principle
 - Properties of the clock signals
- Embedded jitter measurement
 - Principle
 - Evaluation of the method by simulations
 - Hardware implementation
 - Evaluation of the jitter measurement in hardware
- Entropy management using stochastic model and jitter measurement
 - Simplified jitter measurement
 - Model-based embedded entropy management
 - Discussion
 - Evaluation of the method by attacks

Conclusions

Conclusions

- We presented an original, simple and precise method of jitter measurement implementable in logic devices
- We demonstrated that in conjunction with a suitable statistical model, the measured jitter can be used to estimate entropy at the output of the generator
- We also showed that the proposed entropy estimator can be used to build a rapid dedicated on-line statistical test that is perfectly adapted to the generator's principle
- ► This approach complies with AIS31 and ensures a high level of **security** by rapidly detecting all deviations from correct behavior

Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG

Viktor FISCHER Jean Monnet University Saint-Etienne, France

David LUBICZ DGA-Maitrise de l'information, France Université de Rennes 1, Rennes, France

CHES 2014 - Busan, Korea

