'
L 3
TI-ITI 212N

Efficient Power and Timing Side Channels
for Physical Unclonable Functions

CHES, September 26, 2014

U. Rihrmair @) X, Xu (). () "], S3lter (¢ A. Mahmoud @)
M. Majzoobi (@), F. Koushanfar (d) W. Burleson (®)

(@) TU Miinchen, ) University of Massachusetts at Amherst
(©) Freie Universitat Berlin, (9 Rice University

(*) These authors contributed equally



TUTI

Outline

1. Background: The Arbiter PUF Family,
Pure Modeling Attacks, and Their Limitations

Power and Timing Side Channels on XOR Arbiter PUFs
Combining Side Channels with Modeling Attacks

Our Results

2.
3.
4.
5

. Summary




Physical Unclonable Functions (PUFs) TUT




Physical Unclonable Functions (PUFs) TUT

PUF
(= (partly) disordered,
unclonable physical system S) Responses R,
External Stimuli/ (R; is a function of

the applied challenge C,
and the specific disorder in S)

Challenges C,

| 4

(C., R): Challenge-
response pairs (CRPs)
of the PUF




Physical Unclonable Functions (PUFs) TUT

PUF
(= (partly) disordered,
unclonable physical system S) Responses R,
External Stimuli/ (R; is a function of

the applied challenge C,
and the specific disorder in S)

Challenges C,

| 4

(C., R): Challenge-
response pairs (CRPs)
of the PUF

Strong PUFs:




Physical Unclonable Functions (PUFs) TUT

PUF
(= (partly) disordered,
unclonable physical system S) Responses R,
External Stimuli/ (R;is a function of
Challenges C. the applied challenge C,
1

and the specific disorder in S)
|

| 4

(C., R): Challenge-
response pairs (CRPs)
of the PUF

Strong PUFs:

* Challenge-response interface is publicly accessible

— Everyone who holds physical possession of the Strong PUF
can freely apply challenges and read out responses




Physical Unclonable Functions (PUFs) TUT

PUF
(= (partly) disordered,
unclonable physical system S) Responses R,

External Stimuli/ (R;is a function of
Challenges C. the applied challenge C,
and the specific disorder in S)

| 4

(C., R): Challenge-
response pairs (CRPs)
of the PUF

Strong PUFs:

* Challenge-response interface is publicly accessible

— Everyone who holds physical possession of the Strong PUF
can freely apply challenges and read out responses

* Very many possible challenges (ideally exponentially many)



Physical Unclonable Functions (PUFs) TUT

PUF
(= (partly) disordered,
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(C., R): Challenge-

response pairs (CRPs)
of the PUF

Strong PUFs:

* Challenge-response interface is publicly accessible

— Everyone who holds physical possession of the Strong PUF
can freely apply challenges and read out responses

* Very many possible challenges (ideally exponentially many)

e Complex: No numerical prediction of unknown responses
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The most widespread electrical Strong PUF: TI.ITI
Arbiter PUFs !
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X[0] X[1] X[126] X[127]
X[1] =0 X[126] =1

e But: Linear!

« Adversaries can derive the internal delays via machine learning
techniques (in so-called ,modeling attacks*) %)

— Complexity of attacks: Linear no. of CRPs, quadratic runtime

(1) B. Gassend et al, CCS 2002  (2) D. Lim, MIT, 2004, and elsewhere 4
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e Both XOR-based... (Also output network of LW PUF is XOR-based)
* ,,Most secure” members of the Arbiter PUF family! (1.2)
— All others have been broken (1.2)
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k-XOR Arbiter PUF Lightweight PUF (LW PUF)
G. Suh et al, DAC 2007 M. Majzoobi et al, ICCAD 2008
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XOR [—> Input Output

\ 4

(H) MomjaN Indino

\ 4

e |nterconnect Network

* How secure?

— Modeling attacks have exponential complexity (in no. of XORs) (1.2)
* Downside: Also exponentially bad stability (in no. of XORs)...

— 8 XORs explicitly recommended as secure in literature (1.2

(1) Rihrmair et al., CCS 2010. (2) Rihrmair et al., T-IFS 2013 6
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Since direct access is difficult,
ol @ we measure a
global parameter instead:

XOR —> The cumulative number of ones

- (and zeros)
o a in the individual outputs
of the parallel Arbiter PUFs!

For example: In an 8 XOR Arbiter
PUF, 5 individual ouputs are one,
3 are zero

Ideal, but (but unknown which are 0/1)

difficult!!!

« Either by power analysis or by timing analysis...
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e Basicidea: Transition in the latches from zero to one draws power...

* More power consumption means more transitions means more ones!
— Provides cumulative number of ones/zeros in single Arb PUF outputs
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e The PUF embedding device has other parts that draw power

e (Can we isolate the effect of the latches?

— Develop specialized statistical technique in the paper:
Repeat measurements, analyze probability distribution

Power trace of the whole design

_ ] Power SC info we want
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Overview: Power and Timing Side Channels

* Both provide the cumulative number of zeros and ones
in the k individual Arbiter PUF outputs
within a k-XOR Arbiter PUF or LW PUF

 Non-invasive, non-destructive, inexpensive

 Timing SC: Requires only an FPGA board,
measurement of one CRP and side channel info
takes about 1mes.

 Power SC: Requires only an FPGA board and an oscilloscope,
measurement of one CRP and side channel info
takes about 1ms.
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Are the Side Channels Useful At All? TLTI

« At first sight, the cumulative number of zeros/ones
appears useless...

— No straightforward relevance for the underlying
machine learning (ML) problem...

e |trequires a ,tailormade” ML approach to exploit this info
— Quite non-trivial...
— One of the main contributions of the paper

— Summary over next two slides

— Details: See paper
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Machine Learning and Side Channels

e General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1.2):

A

—n(T
P R=6(w; ¢,
binary response of ArbPUF /
Heavyside step function \

Delay difference parameter for all stages challenge parity vector

e Model the cumulative number of ones as:
ﬁ:Zi R:Z,e(WITCPI)

e Optimize PUF-model w and minimize prediction error I

[(w,CRPs)=)_ (A(w)—n)’

(C,n)e CRPs

(1) RGhrmair et al., CCS 2010 (2) Rithrmair et al., T-IFS 2013 15
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e Use the following gradient in the optimization of w:

Val=X o o 20i=n)o(# @) (10 (# ¢,
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e Use the following gradient in the optimization of w:

Val=2c meomes 2(0—=n)0 (W] @) (1=0 (W] ¢,)) ¢,

e In each summand, only terms with index i appear...
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e Use the following gradient in the optimization of w:
Vi l= 22 e meces 2= 0 (W] @) (1=0 (W] ¢,)) @,
e In each summand, only terms with index i appear...

« Contrary to case w/o side channels (1.2) :

VW..'I:Z(C n) ECRPs _r (pl H]?&l

(1) Rithrmair et al., CCS 2010 (2) Rihrmair et al., T-IFS 2013 16
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Use the following gradient in the optimization of w:
Vﬁil:Z(C’n)eCRps 2(n—n)o | W?q)i.)(l_g("_{’?q)i))%

e In each summand, only terms with index i appear...

Contrary to case w/o side channels (1.2) ;

VW..'I:Z(C n) ECRPs _r (pl H]#l

This leads to a strong (exponential!) efficiency improvement

(1) Rithrmair et al., CCS 2010 (2) Rihrmair et al., T-IFS 2013 16
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e Timin g SC: No.of | Bit | CRPs |Prediction Rate | Training Time | Predict. Rate | Training Time
XORs | Length | (x10%) | XOR Arb.PUF |[XOR Arb.PUF| LW PUF LW PUF
64 26 98.5% 2 min 98.5% I min
8 128 51.6 97.5% 12 min 98.2% 9 min
256 103 97.7% 1:35 hrs 97.8% 1:00 hrs
512 205 97.4% 16:50 hrs 97.5% 3:30 hrs
64 39 98.1% 16.5 min 98.5% 2 min
12 128 77.4 97.4% 38.5 min 97.9% 24.1 min
- 256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs
64 52 98% 37 min 98% 7 min
16 128 103.2 97.5% 2 hrs 97.5% 51.7 min
256 206 97.3% 15.1 hrs 96.9% 4.8 hrs
512 410 96.5% 102 hrs 96.7% 20.2 hrs
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No. of | Bit CRPs | Prediction Rate | Training Time | Predict. Rate | Training Time
XORs | Length | (x 10%) | XOR Arb.PUF |XOR Arb.PUF| LW PUF LW PUF
3 64 26 98.1% 3 min 98.4% 1.25 min
128 51.6 98% 13 min 98.1% 9.25 min
2 64 39 98.3% 11 min 98.2% 3.5 min
- 128 77.4 97.3% 47 min 97.8% 25 min
6 64 52 98% 38 min 98% 6.5 min
128 103.2 97.5% 2:28 hrs 97.5% 46.5 min
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Power SC:

No. of | Bit CRPs | Prediction Rate | Training Time | Predict. Rate | Training Time
XORs | Length | (x 10%) | XOR Arb.PUF |XOR Arb.PUF| LW PUF LW PUF
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512 205 97.4% 16:50 hrs 97.5% 3:30 hrs
64 39 98.1% 16.5 min 98.5% 2 min
12 128 77.4 97.4% 38.5 min 97.9% 24.1 min
- 256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs
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3 64 26 98.1% 3 min 98.4% 1.25 min
128 51.6 98% 13 min 98.1% 9.25 min
2 64 39 98.3% 11 min 98.2% 3.5 min
- 128 77.4 97.3% 47 min 97.8% 25 min
6 64 52 98% 38 min 98% 6.5 min
128 103.2 97.5% 2:28 hrs 97.5% 46.5 min

Stronger noise in the power SC for large bitlengths!
Recall: 8 XORs had explicitly been suggested as secure...
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Asymptotic Performance Analysis TI.ITI
on Simulated CRP Data

10’ . —
® 64 bit LW PUF
B 128 bit LW PUF
105 || A 256 bit LW PUF
¥ 512 bit LW PUF
O 64 bit XOR Arb. PUF
s || O 128 bit XOR Arb. PUF
10" 5| A 256 bit XOR Arb. PUF S v v/
V 512 bit XOR Arb. PUF Wy
—_ | m vv
R y=z* i v
v 10* |
£ A
10° b
10° |
.‘..-"... .
101 ) . ; R , \ e
10? 10° 10*

# free parameters = bitlength x no. XORs

e Only cubic runtime and linear no. of CRPs required!

— Compare: Quadratic runtime complexity and linear no. of CRPs
of pure modeling attacks on standard Arb PUFs (i.e., without XORs)
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Summary TUT

 New attack strategy on XOR-based Arbiter PUFs:
Combined modeling and side channel attacks

— Non-invasive, non-destructive, inexpensive, very efficient...

* Presented side channels are:
— The first power and timing side channels on PUFs
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* Presented side channels are:
— The first power and timing side channels on PUFs

— The first direct side channels on Strong PUFs
that can notably increase attack performance (compare (1.2:3))

* Enables low-degree polynomial attacks for
LW PUFs and XOR Arbiter PUFs

— These were considered the most secure members
of the Arbiter PUF family prior to our attacks

— Only linear no. of CRPs and cubic runtime required

(1) Merli et al., TRUST 2011. (2) Delvaux et al., HOST 2013.  (3) Rihrmair et al., CCS 2010 and IEEE T-IFS 2013. 21



Summary TUT




Summary TUTI

* Aslong as no countermeasures are developed and put in place,
no existing member of the Arbiter PUF remains secure

— Some countermeasures are sketched in our paper,
but this topic is mainly ongoing work




Summary TUT

* Aslong as no countermeasures are developed and put in place,
no existing member of the Arbiter PUF remains secure

— Some countermeasures are sketched in our paper,
but this topic is mainly ongoing work

* Arms race between codemakers and codebreakers
on Strong PUFs continues!




Summary TUT

* Aslong as no countermeasures are developed and put in place,
no existing member of the Arbiter PUF remains secure

— Some countermeasures are sketched in our paper,
but this topic is mainly ongoing work

* Arms race between codemakers and codebreakers
on Strong PUFs continues!

 Watch this space, there’s more to come! ©




