

Efficient Power and Timing Side Channels for Physical Unclonable Functions

CHES, September 26, 2014

U. Rührmair ^{(a), (*)}, X. Xu ^{(b), (*)}, J. Sölter ^(c), A. Mahmoud ^(a), M. Majzoobi ^(d), F. Koushanfar ^(d), W. Burleson ^(b)

- (a) TU München, (b) University of Massachusetts at Amherst
 - (c) Freie Universität Berlin, (d) Rice University
 - (*) These authors contributed equally

Outline

- 1. Background: The Arbiter PUF Family, Pure Modeling Attacks, and Their Limitations
- 2. Power and Timing Side Channels on XOR Arbiter PUFs
- 3. Combining Side Channels with Modeling Attacks
- 4. Our Results
- 5. Summary

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

 $(R_i ext{ is a function of} \ \ \,$ the applied challenge $C_i \ \ \,$ and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

(R_i is a function of the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

 $(R_i$ is a function of the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

- Challenge-response interface is publicly accessible
 - Everyone who holds physical possession of the Strong PUF can freely apply challenges and read out responses

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

 $(R_i$ is a function of the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

- Challenge-response interface is publicly accessible
 - Everyone who holds physical possession of the Strong PUF can freely apply challenges and read out responses
- Very many possible challenges (ideally exponentially many)

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

 $(R_i ext{ is a function of}$ the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

- Challenge-response interface is publicly accessible
 - Everyone who holds physical possession of the Strong PUF can freely apply challenges and read out responses
- Very many possible challenges (ideally exponentially many)
- Complex: No numerical prediction of unknown responses

But: Linear!

- But: Linear!
- Adversaries can derive the internal delays via machine learning techniques (in so-called "modeling attacks") (2)
 - Complexity of attacks: Linear no. of CRPs, quadratic runtime

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

Lightweight PUF (LW PUF)

M. Majzoobi et al, ICCAD 2008

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

Lightweight PUF (LW PUF)

M. Majzoobi et al, ICCAD 2008

Both XOR-based... (Also output network of LW PUF is XOR-based)

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

Lightweight PUF (LW PUF)

M. Majzoobi et al, ICCAD 2008

- Both XOR-based... (Also output network of LW PUF is XOR-based)
- "Most secure" members of the Arbiter PUF family! (1,2)
 - All others have been broken (1,2)

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

Lightweight PUF (LW PUF)

M. Majzoobi et al, ICCAD 2008

k-XOR Arbiter PUF

G. Suh et al, DAC 2007

Lightweight PUF (LW PUF)

M. Majzoobi et al, ICCAD 2008

How secure?

- Modeling attacks have exponential complexity (in no. of XORs) (1,2)
 - Downside: Also **exponentially bad** stability (in no. of XORs)...
- 8 XORs explicitly recommended as secure in literature (1,2)

Outline

- 1. Background: Arbiter PUF Variants,
 Pure Modeling Attacks, and Their Limitations
- 2. Power and Timing Side Channels on XOR Arbiter PUFs and LW PUFs
- 3. Combining Side Channels with Modeling Attacks
- 4. Our Results
- 5. Summary

Ideal, but difficult!!!

Since direct access is difficult, we measure a global parameter instead:

The cumulative number of ones (and zeros) in the individual outputs of the parallel Arbiter PUFs!

For example: In an 8 XOR Arbiter PUF, 5 individual ouputs are one, 3 are zero (but unknown which are 0/1)

Since direct access is difficult, we measure a global parameter instead:

The cumulative number of ones (and zeros) in the individual outputs of the parallel Arbiter PUFs!

For example: In an 8 XOR Arbiter PUF, 5 individual ouputs are one, 3 are zero (but unknown which are 0/1)

Either by power analysis or by timing analysis...

• Basic idea: Transition in the latches from zero to one draws power...

- **Basic idea:** Transition in the latches **from zero to one** draws power...
- More power consumption means more transitions means more ones!
 - Provides cumulative number of ones/zeros in single Arb PUF outputs

- Basic idea: Transition in the latches from zero to one draws power...
- More power consumption means more transitions means more ones!
 - Provides cumulative number of ones/zeros in single Arb PUF outputs

Measure "global" power consumption

Power Side Channel (PSC) and Noise

- The PUF embedding device has other parts that draw power
- Can we isolate the effect of the latches?
 - Develop specialized statistical technique in the paper:
 Repeat measurements, analyze probability distribution

Power trace of the whole design

Power SC info we want

Timing Side-Channel (TSC)

(1) M. Majzoobi et al., T-IFS 2011

Timing Side-Channel (TSC)

TSC extraction schematic (1)

(1) M. Majzoobi et al., T-IFS 2011

Timing Side-Channel (TSC)

- Sweep clock to approximate the timing of XOR inputs
- Toggle will be created by changes from individual Arbiter PUFs
- Estimate the number of flipping XOR inputs with a good probability

TSC extraction schematic (1)

(1) M. Majzoobi et al., T-IFS 2011

Overview: Power and Timing Side Channels

 Both provide the cumulative number of zeros and ones in the k individual Arbiter PUF outputs within a k-XOR Arbiter PUF or LW PUF

- Both provide the cumulative number of zeros and ones in the k individual Arbiter PUF outputs within a k-XOR Arbiter PUF or LW PUF
- Non-invasive, non-destructive, inexpensive

- Both provide the cumulative number of zeros and ones in the k individual Arbiter PUF outputs within a k-XOR Arbiter PUF or LW PUF
- Non-invasive, non-destructive, inexpensive
- Timing SC: Requires only an FPGA board, measurement of one CRP and side channel info takes about 1ms.

- Both provide the cumulative number of zeros and ones in the k individual Arbiter PUF outputs within a k-XOR Arbiter PUF or LW PUF
- Non-invasive, non-destructive, inexpensive
- Timing SC: Requires only an FPGA board, measurement of one CRP and side channel info takes about 1ms.
- **Power SC:** Requires only an FPGA board and an oscilloscope, measurement of one CRP and side channel info takes about 1ms.

Outline

- 1. Background: Arbiter PUF Variants,
 Pure Modeling Attacks, and Their Limitations
- 2. Power and Timing Side Channels on XOR Arbiter PUFs and LW PUFs
- 3. Combining Side Channels with Modeling Attacks
- 4. Our Results
- 5. Summary

Are the Side Channels Useful At All?

Are the Side Channels Useful At All?

- At first sight, the cumulative number of zeros/ones appears useless...
 - No straightforward relevance for the underlying machine learning (ML) problem...

Are the Side Channels Useful At All?

- At first sight, the cumulative number of zeros/ones appears useless...
 - No straightforward relevance for the underlying machine learning (ML) problem...
- It requires a "tailormade" ML approach to exploit this info
 - Quite non-trivial...
 - One of the main contributions of the paper
 - Summary over next two slides
 - Details: See paper

General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1,2):

General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1,2):

General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1,2):

Model the cumulative number of ones as:

General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1,2):

Model the cumulative number of ones as:

$$\hat{n} = \sum_{i} \hat{R}_{i} = \sum_{i} \theta \left(\vec{w}_{i}^{T} \varphi_{i} \right)$$

• Optimize PUF-model w and minimize prediction error 1:

General model for i-th Arbiter PUF within k-XOR Arbiter PUF (1,2):

Model the cumulative number of ones as:

$$\hat{n} = \sum_{i} \hat{R}_{i} = \sum_{i} \theta \left(\vec{w}_{i}^{T} \varphi_{i} \right)$$

Optimize PUF-model w and minimize prediction error I:

$$l(\vec{w}, CRPs) = \sum_{(C,n) \in CRPs} (\hat{n}(\vec{w}) - n)^2$$

$$\nabla_{\vec{w}_i} l = \sum_{(C,n) \in CRPs} 2(\hat{n} - n) \sigma(\vec{w}_i^T \varphi_i) (1 - \sigma(\vec{w}_i^T \varphi_i)) \varphi_i$$

$$\nabla_{\vec{w}_i} l = \sum_{(C,n) \in CRPs} 2(\hat{n} - n) \sigma(\vec{w}_i^T \varphi_i) (1 - \sigma(\vec{w}_i^T \varphi_i)) \varphi_i$$

In each summand, only terms with index "i" appear…

$$\nabla_{\vec{w_i}} l = \sum_{(C,n) \in \mathit{CRPs}} 2(\hat{n} - n) \sigma(\vec{w}_i^T \varphi_i) (1 - \sigma(\vec{w}_i^T \varphi_i)) \varphi_i$$

- In each summand, only terms with index "i" appear…
- Contrary to case w/o side channels (1,2):

$$\nabla_{\vec{w_i}} l = \sum_{(C,n) \in CRPs} 2(\hat{r} - r) \varphi_i \prod_{j \neq i} \vec{w_j} \varphi_j$$

$$\nabla_{\vec{w}_i} l = \sum_{(C,n) \in CRPs} 2(\hat{n} - n) \sigma(\vec{w}_i^T \varphi_i) (1 - \sigma(\vec{w}_i^T \varphi_i)) \varphi_i$$

- In each summand, only terms with index "i" appear…
- Contrary to case w/o side channels (1,2):

$$\nabla_{\vec{w_i}} l = \sum_{(C,n) \in CRPs} 2(\hat{r} - r) \varphi_i \prod_{j \neq i} \vec{w_j} \varphi_j$$

• This leads to a strong *(exponential!)* efficiency improvement

Outline

- 1. Background: Arbiter PUF Variants,
 Pure Modeling Attacks, and Their Limitations
- 2. Power and Timing Side Channels on XOR Arbiter PUFs and LW PUFs
- 3. Combining Side Channels with Modeling Attacks
- 4. Our Results
- 5. Summary

• Timing SC:

No. of	Bit	CRPs	Prediction Rate	Training Time	Predict. Rate	Training Time
XORs	Length	$(\times 10^3)$	XOR Arb. PUF	XOR Arb. PUF	LW PUF	LW PUF
	64	26	98.5%	2 min	98.5%	1 min
8	128	51.6	97.5%	12 min	98.2%	9 min
0	256	103	97.7%	1:35 hrs	97.8%	1:00 hrs
	512	205	97.4%	16:50 hrs	97.5%	3:30 hrs
	64	39	98.1%	16.5 min	98.5%	2 min
12	128	77.4	97.4%	38.5 min	97.9%	24.1 min
12	256	154.5	97.1%	3.8 hrs	97.3%	1.75 hrs
	512	308	96.92%	56.25 hrs	97.11%	9.55 hrs
16	64	52	98%	37 min	98%	7 min
	128	103.2	97.5%	2 hrs	97.5%	51.7 min
10	256	206	97.3%	15.1 hrs	96.9%	4.8 hrs
	512	410	96.5%	102 hrs	96.7%	20.2 hrs

• Timing SC:

No. of XORs	Bit Length	$\frac{\text{CRPs}}{(\times 10^3)}$	Prediction Rate XOR Arb. PUF	Training Time XOR Arb. PUF	Predict. Rate LW PUF	Training Time LW PUF
AORS	Length	(\ 10)	AOR AID. I CI			
	64	26	98.5%	2 min	98.5%	1 min
8	128	51.6	97.5%	12 min	98.2%	9 min
0	256	103	97.7%	1:35 hrs	97.8%	1:00 hrs
	512	205	97.4%	16:50 hrs	97.5%	3:30 hrs
	64	39	98.1%	16.5 min	98.5%	2 min
12	128	77.4	97.4%	38.5 min	97.9%	24.1 min
12	256	154.5	97.1%	3.8 hrs	97.3%	1.75 hrs
	512	308	96.92%	56.25 hrs	97.11%	9.55 hrs
	64	52	98%	37 min	98%	7 min
16	128	103.2	97.5%	2 hrs	97.5%	51.7 min
16	256	206	97.3%	15.1 hrs	96.9%	4.8 hrs
	512	410	96.5%	102 hrs	96.7%	20.2 hrs

Power SC:

No. of			Prediction Rate			_
XORs	Length	$(\times 10^{\circ})$	XOR Arb. PUF	XOR Arb. PUF	LW PUF	LW PUF
8	64	26	98.1%	3 min	98.4%	1.25 min
0	128	51.6	98%	13 min	98.1%	9.25 min
12	64	39	98.3%	11 min	98.2%	3.5 min
12	128	77.4	97.3%	47 min	97.8%	25 min
16	64	52	98%	38 min	98%	6.5 min
10	128	103.2	97.5%	2:28 hrs	97.5%	46.5 min

Timing SC:

No. of XORs	Bit Length	$\frac{\text{CRPs}}{(\times 10^3)}$	Prediction Rate XOR Arb. PUF	Training Time XOR Arb. PUF	Predict. Rate LW PUF	Training Time LW PUF
AORS	Length	(\ 10)	AOR AID. I CI			
	64	26	98.5%	2 min	98.5%	1 min
8	128	51.6	97.5%	12 min	98.2%	9 min
0	256	103	97.7%	1:35 hrs	97.8%	1:00 hrs
	512	205	97.4%	16:50 hrs	97.5%	3:30 hrs
	64	39	98.1%	16.5 min	98.5%	2 min
12	128	77.4	97.4%	38.5 min	97.9%	24.1 min
12	256	154.5	97.1%	3.8 hrs	97.3%	1.75 hrs
	512	308	96.92%	56.25 hrs	97.11%	9.55 hrs
	64	52	98%	37 min	98%	7 min
16	128	103.2	97.5%	2 hrs	97.5%	51.7 min
16	256	206	97.3%	15.1 hrs	96.9%	4.8 hrs
	512	410	96.5%	102 hrs	96.7%	20.2 hrs

Power SC:

No. of XORs	Bit Length	l	Prediction Rate XOR Arb. PUF			Training Time LW PUF
8	64	26	98.1%	3 min	98.4%	1.25 min
8	128	51.6	98%	13 min	98.1%	9.25 min
12	64	39	98.3%	11 min	98.2%	3.5 min
12	128	77.4	97.3%	47 min	97.8%	25 min
16	64	52	98%	38 min	98%	6.5 min
10	128	103.2	97.5%	2:28 hrs	97.5%	46.5 min

Stronger noise in the power SC for large bitlengths!

Timing SC:

No. of	Bit	CRPs	Prediction Rate	Training Time	Predict. Rate	Training Time
XORs	Length	$(\times 10^3)$	XOR Arb. PUF	XOR Arb. PUF	LW PUF	LW PUF
	64	26	98.5%	2 min	98.5%	1 min
8	128	51.6	97.5%	12 min	98.2%	9 min
0	256	103	97.7%	1:35 hrs	97.8%	1:00 hrs
	512	205	97.4%	16:50 hrs	97.5%	3:30 hrs
	64	39	98.1%	16.5 min	98.5%	2 min
12	128	77.4	97.4%	38.5 min	97.9%	24.1 min
12	256	154.5	97.1%	3.8 hrs	97.3%	1.75 hrs
	512	308	96.92%	56.25 hrs	97.11%	9.55 hrs
	64	52	98%	37 min	98%	7 min
16	128	103.2	97.5%	2 hrs	97.5%	51.7 min
10	256	206	97.3%	15.1 hrs	96.9%	4.8 hrs
	512	410	96.5%	102 hrs	96.7%	20.2 hrs

Power SC:

No. of XORs	Bit Length	l	Prediction Rate XOR Arb. PUF			Training Time LW PUF
8	64	26	98.1%	3 min	98.4%	1.25 min
8	128	51.6	98%	13 min	98.1%	9.25 min
12	64	39	98.3%	11 min	98.2%	3.5 min
12	128	77.4	97.3%	47 min	97.8%	25 min
16	64	52	98%	38 min	98%	6.5 min
10	128	103.2	97.5%	2:28 hrs	97.5%	46.5 min

Stronger noise in the power SC for large bitlengths!

Recall: 8 XORs had explicitly been suggested as secure...

Asymptotic Performance Analysis on Simulated CRP Data

Asymptotic Performance Analysis on Simulated CRP Data

Asymptotic Performance Analysis on Simulated CRP Data

- Only cubic runtime and linear no. of CRPs required!
 - Compare: Quadratic runtime complexity and linear no. of CRPs of pure modeling attacks on standard Arb PUFs (i.e., without XORs)

Outline

- 1. Background: Arbiter PUF Variants,
 Pure Modeling Attacks, and Their Limitations
- 2. Power and Timing Side Channels on XOR Arbiter PUFs and LW PUFs
- 3. Combining Side Channels with Modeling Attacks
- 4. Our Results
- 5. Summary

- New attack strategy on XOR-based Arbiter PUFs:
 Combined modeling and side channel attacks
 - Non-invasive, non-destructive, inexpensive, very efficient...

- New attack strategy on XOR-based Arbiter PUFs:
 Combined modeling and side channel attacks
 - Non-invasive, non-destructive, inexpensive, very efficient...
- Presented side channels are:
 - The first power and timing side channels on PUFs
 - The first direct side channels on Strong PUFs
 that can notably increase attack performance (compare (1,2,3))

- New attack strategy on XOR-based Arbiter PUFs:
 Combined modeling and side channel attacks
 - Non-invasive, non-destructive, inexpensive, very efficient...
- Presented side channels are:
 - The first power and timing side channels on PUFs
 - The first direct side channels on Strong PUFs
 that can notably increase attack performance (compare (1,2,3))
- Enables low-degree polynomial attacks for LW PUFs and XOR Arbiter PUFs
 - These were considered the most secure members of the Arbiter PUF family prior to our attacks
 - Only *linear* no. of CRPs and *cubic* runtime required

- As long as no countermeasures are developed and put in place, no existing member of the Arbiter PUF remains secure
 - Some countermeasures are sketched in our paper,
 but this topic is mainly ongoing work

- As long as no countermeasures are developed and put in place, no existing member of the Arbiter PUF remains secure
 - Some countermeasures are sketched in our paper,
 but this topic is mainly ongoing work
- Arms race between codemakers and codebreakers on Strong PUFs continues!

- As long as no countermeasures are developed and put in place, no existing member of the Arbiter PUF remains secure
 - Some countermeasures are sketched in our paper,
 but this topic is mainly ongoing work
- Arms race between codemakers and codebreakers on Strong PUFs continues!
- Watch this space, there's more to come! ©