
FPGA Implementations of SPRING And Their

Countermeasures against Side-Channel Attacks

Hai Brenner1, Lubos Gaspar2, Gaëtan Leurent3, Alon Rosen1, François-Xavier Standaert2

1 Interdisciplinary Center, Herzliya, Israel
2 Crypto group, Université catholique de Louvain, Louvain-la-Neuve, Belgium

3 Inria, EPI SECRET, Rocquencourt, France

haibrenner@gmail.com, lubos.gaspar@uclouvain.be, gaetan.leurent@inria.fr, alon.rosen@idc.ac.il, fstandae@uclouvain.be

mailto:haibrenner@gmail.com
mailto:haibrenner@gmail.com,lubos.gaspar@uclouvain.be
mailto:gaetan.leurent@inria.fr
mailto:alon.rosen@idc.ac.il
mailto:fstandae@uclouvain.be

Road Map

 Introduction to SPRING PRF

 Unprotected hardware implementation

 Countermeasures against side-channel attacks

 Fully masked solution

 Hybrid solution

2

Introduction to SPRING PRF

Function Description

 SPRING is Subset-Product with Rounding over a RING

𝐹𝑎,𝑠 𝑥1, … , 𝑥𝑘 = 𝐵 𝑎 ⋅

𝑖=1

𝑘

𝑠𝑖
𝑥𝑖

 𝑎, si - a vector of polynomials in polynomial ring 𝑅 = ℤ𝑞 𝑥 𝑥
𝑛 + 1

(all coefficients in 0, 𝑞 − 1).

 Input - 𝑘 bits.

 𝐵- a rounding function, coefficient-wise.

4

Rounding [BPR’12]

 Idea:

Generate errors deterministically by rounding

ℤ𝑞 to “sparse” subset (e.g. ℤ𝑝).

Let 𝑝 < 𝑞 and define 𝑥 𝑝 = 𝑝 𝑞 ⋅ 𝑥 𝑚𝑜𝑑 𝑝

 Interpretation: rounding discards low-order bits of coefficient.

 Claim: We infer hardness of SPRING by reduction from LWE (Learning

With Errors) – NP hard problem.

5

Concrete Function Parameters

𝐹𝑎,𝑠 𝑥1, … , 𝑥64 = 𝐵𝐶𝐻 𝑎 ⋅
𝑖=1

64

𝑠𝑖
𝑥𝑖 2

 Highly optimized parameters:

 𝑞 = 257

 Polynomial degree 𝑛 = 128 (security parameter)

 𝑘 = 𝑥 = 64

 𝐵– rounding to ℤ2 (whether coefficient smaller than 𝑞/2 or not)

 Dual-BCH (ECC) w/ parameters 128,64,22 reduces output bias.

 CTR mode (amortized computation of consecutive subset-products).

6

Optimizations for SPRING

 Optimizing subset product: 𝑎 ⋅ 𝑖=1
64 𝑠𝑖
𝑥𝑖

 FFT Instead of regular multiplication

a s1
x1 … s64

x64 = F-1 (F(a) F(s1)x1 … F(s64)x64)

 is point-wise multiplication.

 Pre-compute F(a), F(si)

 Replace F(a), F(si) entries w/ discrete logs multiplications replaced by

point-wise additions.

 Subset sum modulo 𝑞 − 1 = 256. Simply ignore carry of the most

significant bit modulo operation “for free”.

 Convert back discrete logs to polynomial coefficients w/ 256 entries LUT.

7

Optimizations for SPRING (continued)

 Some other optimizations:

 Dual-BCH code:

 Simple & efficient ECC.

 Just compute syndrome of result w/ dual of

generating polynomial of code.

 simply just 29 shifts and xors.

 CTR mode: (Gray-Code)

 Amortized computation of subset-sum.

 Update subset-sum with only a single add/subtract
key element to previous computation each round.

8

Gray-Code

counter

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

Unprotected hardware

implementation

Top level architecture (for Xilinx Virtex 6 FPGA)

 Arithmetic op. mod 𝑞 = 257 and exponent

arithmetic op. mod 𝑞 − 1 = 256

 Exponents associated with FFT coefficients

stored in True Dual Port RAM (KMEM)

 Subset-sum computed on 8 entries in parallel

 Exponents transformed to coeffs. using LUTs

 FFT128 + Rounding performed in 36 clock cycles

 Next Subset-sum computed in parallel with

FFT128

10

KMEM
64x(128x8b)

8x8b 8x8b
+

16x9b

Exp2Coef

FFT128 ·

16x9b

REGBCH

16x1b
128b

OUT
64b

CTRL

IN

64b

Construction of FFT128

 FFT128 processes 16 coefficients in parallel

 FFT128 composed of: 2x FFT64 sequential units,

8x FFT2 combinatorial units

 FFT64 is implemented using FFT8 and a register

 FFT64 processes 8x8 matrix of coefficients

 FFT64 units also include matrix transpose and

constant multiplications

11

FFT64 FFT64

8x FFT2

FFT128 16x9b

8x9b

16x9b

+ -

FFT2

-
+

Decomposition of FFT8

 Combinatorial

 Processes 8 coefficients in parallel

 3 layers of FFT2 and multiplications by constant

powers of root of unity. 𝜔 = 139. 𝜔16= 4

 Constant multiplications implemented as bit

rotations around 9-bit word

 FFT2 contains: 9-bit combinatorial adder and

substractor mod 𝑞 = 257

12

FFT2 FFT2 FFT2 FFT2

FFT2 FFT2 FFT2 FFT2

<<4 <<4

<<2 <<4 <<6

FFT2 FFT2 FFT2 FFT2

0 1 2 3 4 5 6 7

9b

FFT8

+ -

FFT2

-
+

Cost evaluation & timing results

 Synthesized for Xilinx Virtex 6 FPGA

 Size

 FFT unit occupies 76% of SPRING area

 Constant multipliers inside FFT are the most

expensive (69% of FFT)

 SPRING occupies only 4% of FPGA resources

 Speed

 Evaluation in only 40 clock cycles

13

Units Slices BRAM (36kb)

KMEM 0 2

Subset sum 16 0

Exp2Coef 128 0

FFT128 total 1258 0

 2x FFT8 210 0

 2x FFT REG +

transpose
110 0

 2x Mult. Wi.j 496 0

 1x Mult. wk.l 378 0

 8x FFT2 64 0

Rounding + REG 32 0

BCH 189 0

Control logic 27 0

SPRING - TOTAL 1650 2

Cost and performance comparison

14

Algorithm Type Datapath LUT FF BRAM DSP Fmax
a Cycles

SPRING PRF 128/144b 7292 294 2x36k 0 91.7 40

Lapin1 Auth. 128b 742 140 6x36k 0 140.3 1332

Comp-LWE2 PKE N/A 1879 1142 3x18k 1 250.0 13287b

AES-LUT3 PRP 128b 933 399 10x18k 0 674.0 11

AES-COMB3 PRP 128b 2335 535 0 0 218.6 11

AES-COMB3 PRP 32b 467 976 0 0 315.1 58

SPRING4 PRF 64b Software implementation 392

1 L. Gaspar, G. Leurent, FX. Standaert: Hardware Implementation and Side-Channel Analysis of

Lapin, CT-RSA’14

2 S.S Roy, F. Vercauteren, N. Mentens, D.D. Chen, I. Verbauwhede: Compact Ring-LWE based

Cryptoprocessor, ePrint 2013/866

3 Crypto group, UCL, Louvain-la-Neuve, Belgium

4 Software implementation on Intel Core i7 Ivy Bridge

a Maximum frequency is denoted in MHz

b Number of clock cycles for encryption only

 33x faster than

Lapin

 10x faster than

Spring on Intel

Core i7

Countermeasures

against side-channel

attacks

Fully masked SPRING

 Key exponents - masked by additive shares

 Subset sum (linear)

 Exp2Coef - additive masking is changed to

multiplicative masking

 MM2AM – Sync step. Exchange between

shares. Regain additive shares

 FFT (linear)

 Masked rounding - rounding is highly non-

linear. Complex sync with exchanges.

Generates Boolean shares.

 BCH (linear)

16

KMEM 0
64x(128x8b)

8x8b
8x8b

16x9b

Exp2Coef

BCH

128b

OUT

Exp2Coef

MM2AM

16x9b

FFT128 FFT128

Masked rounding

16x9b 16x9b

16x1b

REG REG

16x1b

BCH

128b

+

64b 64b

KMEM d-1
64x(128x8b)

Mask

refreshing

CTRL

IN
64b

(d-1)x 8x8b
RNG

+
+

8x8b
8x8b+

+
++

x
+

Note:

+ Additive sharing

x Multiplicative sharing

 Boolean sharing

Fully masked SPRING - cost

 Coordination between parties:

 Expensive resources

 Slow: clock cycle increase quadratically with number of shares

 Requires lot of fresh randomness

 Fits into FPGA, but not practical

17

Basic operations Random Total # of slices

ADD MUL INV MUX2 XOR bits d=2 d=3 d=4 d=5

Msk. Refresh d-2 0 0 0 0 8(d-1) 3 5 6 7

MM2AM d-2 3d2-2d d 0 0 8(d2-1) 527 1353 2551 4121

Msk. round 3d-2 0 0 256d d-1 266d-257 1321 1409 1473 1894

Partially masked SPRING - idea

 After subset sum computation, diffusion of

secret key is complete

 Fast: clock cycles increase linearly with

number of shares

 Next, it is sufficient to protect other units only

against Simple Power Analysis (SPA)

 Shuffling the state is efficient countermeasure:

 Shuffling 8 rows provide 8! = 40320 execution

permutations sufficient against SPA

 Shuffling implementation size is negligible (only

adds 24 slices)

 Has no impact on performance

18

L
in

e
a
r

(m
a
s
k
in

g
)

KMEM 0
64x(128x8b)

8x8b
8x8b 8x8b

+

KMEM d-1
64x(128x8b)

+
8x8b

Mask

refreshing

RNG

CTRL

IN

64b

16x8b

16x9b

Exp2Coef

FFT128 ·

16x9b

REGBCH

16x1b
128b

OUT
64b

16x8b
+

(d-1)x 8x8b

++ + +

N
o

n
-l

in
e
a
r

(s
h

u
ff

li
n

g
)

Conclusions

Conclusions

 The SPRING PRF

 Simple algebraic structure

 Highly parallelizable and easy to mask

 Unprotected SPRING

 First SPRING hardware implementation

 Compact and very fast

 Fully masked implementation

 Complexity of frequent masking is a limiting factor

 Used area and random bits increase quadratically w/ # of shares.

 Partially masked implementation

 Only subset sum is masked (necessary protection against DPA)

 The rest is shuffled (sufficient protection against SPA)

20

Thank you for attention!

