
ICEPOLE: High-speed, Hardware-oriented Authenticated
Encryption Scheme

Pawe l Morawiecki 1,2 Kris Gaj4 Ekawat Homsirikamol4

Krystian Matusiewicz7 Josef Pieprzyk3 Marcin Rogawski6

Marian Srebrny1,2 Marcin Wójcik5

Institute of Computer Science, Polish Academy of Sciences, Poland 1

Section of Informatics, University of Commerce, Kielce, Poland 2

Queensland University of Technology, Brisbane, Australia 3

Cryptographic Engineering Research Group, George Mason University, USA 4

Cryptography and Information Security Group, University of Bristol, United Kingdom 5

Cadence Design Systems, San Jose, USA 6

Intel, Gdańsk, Poland 7

CHES 2014, Busan, South Korea

1 / 28

Outline

1 Motivation

2 Specification of ICEPOLE

3 ICEPOLE security and performance analysis

4 Conclusion

2 / 28

Non-authenticated Encryption

Alice got an encrypted message from Bob...

Is it really from Bob?

Has the ciphertext been modified?

No mechanisms to answer these questions....

3 / 28

Authenticated Encryption (AE) Goals

Authenticated encryption scheme should fulfil two goals:

confidentiality

authenticity

4 / 28

Common AE Interface

INPUT:

key

plaintext

associated data (optionally)

nonce

OUTPUT:

ciphertext

authentication tag

5 / 28

Common AE Interface

INPUT:

key

plaintext

associated data (optionally)

nonce

OUTPUT:

ciphertext

authentication tag

5 / 28

Standards

Encrypt-then-MAC (standardized in ISO/IEC 19772:2009)

CCM (Counter with Cipher Block Chaining MAC)

EAX (designed to replace CCM as the NIST standard)

AES-GCM (arguably most common standard, point of reference in
the new competition)

others (OCB, CWC, ...)

6 / 28

Many Standards and Solutions but...

Encrypt-then-MAC, EAX (two-pass)

CCM (two-pass, message length has to be known before encryption
starts)

AES-GCM (polynomial multiplication very expensive in hardware,
class of weak keys)

What if nonce is reused? All security lost? Intermediate level?

7 / 28

CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness

“CAESAR will identify a portfolio of authenticated ciphers that (1) offer
advantages over AES-GCM and (2) are suitable for widespread adoption.”

2014.03.15 - end of 2017

1st round - 57 submissions

http://competitions.cr.yp.to/caesar.html

8 / 28

ICEPOLE General Overview

based on the variant of duplex framework introduced by Bertoni et al.
”Duplexing the sponge: (...)” Cryptology ePrint archive 2011/499

high-speed hardware-oriented ICEPOLE permutation is the heart of
our design

family of authenticated encryption schemes with three parameters:
key, nonce and secret message number

primary recommendation: ICEPOLE-128: 128-bit key and 128-bit
nonce

9 / 28

Encryption and Tag Generation - Overview

P

key || nonce

 co

pad

σSMN

pad

σAD

 cn

pad

σP
 T

Initialization

12
P6 P6 P6

Processing phase Tag generation

10 / 28

Decryption and Tag Verification

P

key || nonce

 co

pad

σSMN

pad

σAD

 cn

pad

σP T

Initialization

12
P6 P6 P6

Processing phase Tag generation

The same permutations used for encryption and decryption

11 / 28

ICEPOLE Internal State Organization

1280-bit internal state S

can be viewed as two-dimensional array S [4][5], where each element
of array is a 64-bit word

12 / 28

ICEPOLE Round and P6, P12 Permutations

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE Permutations

P6: 6-round permutation, used in Processing Phase

P12: 12-round permutation, used only in Initialization

13 / 28

µ Step
R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

GF(25) multiplication modulo x5 + x2 + 1

easy to implement (just XOR operations)

main source of diffusion in the algorithm

14 / 28

ρ Step

0
 1

 2
 3

6
3 2

3
 4

 5
 6

S [x][y] := S [x][y] ≪ offsets[x][y] for all (0 ≤ x ≤ 3), (0 ≤ y ≤ 4)

each word has a distinct offset value

ρ introduced to mix information between ‘slices’ of the state

15 / 28

π Step

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

S [x
′
][y

′
]← π(S [x][y])

π reorders the words in the state S

introduced to provide more mixing between words

16 / 28

ψ Step

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE S-box

The S-box maps a 5-bit input vector (M0, ... M4) to a 5-bit output vector
(Z0, ... Z4)

inspired by the Keccak S-box

the only non-linear step in ICEPOLE

17 / 28

κ Step

:

In  the 64-bit constant is xored with S[0][0].

S[0][0] := S[0][0] � constant[numberOfRound]

The constant value for each round is di↵erent. The values are given in Appendix B.

2.4 Initialization Phase

First, the state is initialized with the 1280-bit pseudorandom constant. The constant was ob-
tained by applying the Keccak-f[1600] permutation (an underlying permutation of the SHA-3
standard) to the all-zero vector and truncating the result to 1280 bits. (The constant is given in
Appendix C.)

Once the state is filled with the constant, the 128-bit key K and the 128-bit nonce are intro-
duced into the state. K0 and K1 denote two 64-bit words of the key, nonce0 and nonce1 denote
two 64-bit words of the nonce.

S[0][0] := S[0][0]�K0

S[1][0] := S[1][0]�K1

S[2][0] := S[2][0]� nonce0

S[3][0] := S[3][0]� nonce1

Then, the P12 permutation is run on the state S.

S := P12(S)

2.5 Processing Phase

The input data is processed in blocks. First, the associated data blocks �AD
i are processed and

next the plaintext blocks �P
i . The plaintext blocks are authenticated and encrypted whereas the

associated data blocks are only authenticated.
A block length has to be between 0 (the empty block) and 1024 bits. Each block is padded

to be 1026 bits long and the padding rules are as follows. First, every block is appended with
the frame bit. The frame bit is set to 1 for the last �AD block and all �P

i except the last one.
Otherwise the frame bit is set to 0. Once the frame bit is appended, a given block is padded
with a simple rule: append 1 and such a number of 0’s which gives 1026-bit block. Thus the
padded block has at least two padding bits (the frame bit and 1) and maximally 1026 padding
bits (in case of the empty block).

In the processing phase the ciphertext blocks ci are produced and the state is updated.

for all blocks �AD
i {

�AD
i := pad(�AD

i)
Sb1026c := Sb1026c � �AD

i

S := P6(S)
}

for all blocks �P
i {

ci = Sblc � �P
i (l is a length of �P

i)

�P
i := pad(�P

i)
Sb1026c := Sb1026c � �P

i

Round Constants

each round with a distinct constant

introduced to break similarities between rounds

The constants are calculated as the output of a simple 64-bit
maximum-cycle Linear Feedback Shift Register (LFSR).

18 / 28

ICEPOLE Security (Parameters)

ICEPOLE is based on the duplex construction,
parameters: r (bitrate) and c (capacity)

ICEPOLE-128: 128-bit security level (r = 1026 bits and c = 256 bits)

ICEPOLE-256: 256-bit security level (r = 962 bits and c = 318 bits)

If the underlying permuations are secure, ICEPOLE is secure (security
reduction inherited from the duplex construction)

19 / 28

Nonce Requirement

ICEPOLE requires a nonce

In case of nonce reuse, some level of intermediate robustness provided
by secret message number and associated data (if distinct)

In case of violating all nonce-like mechanisms (nonce reused, secret
message number reused, the same associated data), security claims
do not hold (recent analysis by Tao Huang, Hongjun Wu, Ivan
Tjuawinata)

20 / 28

ICEPOLE Security Analysis

Differential cryptanalysis (with aid of a SAT solver, we provide a
bound on differential trail probability — for 12 rounds, probability
6 2−84)

Linear cryptanalysis (good linear profile of s-box, propagation of
linear masks very similar to differential analysis, expecting similar
security margin. Rigorous analysis to be done)

Rotational cryptanalysis (good selection of round constants and
pseudo-random initial state prevent this kind of attack)

SAT-based cryptanalysis (experimentally verified, the attack
reaches only 3 rounds)

Techniques exploiting low algebraic degree (algebraic degree of a
single round is 4, then for 4 rounds a degree is 256, making the
attacks infeasible)

21 / 28

FPGA Implementation Results

Xilinx Virtex-6

Throughput: 41364 Mbps

Area: 1501 Slices

Throughput/Area: 27.56 Mbps/Slice

Altera Stratix-IV

Throughput: 38779 Mbps

Area: 4564 ALUTs

Throughput/Area: 8.50 Mbps/ALUT

22 / 28

FPGA Implementation - Area

0

1000

2000

3000

4000

5000

6000

7000

8000

AES-GCM Keyak ICEPOLE

[V
ir
te

x
 6

:
s
lic

e
s
,
S

tr
a
ti
x
 I
V

:
A

L
U

T
s
] Virtex 6

Stratix IV

23 / 28

FPGA Implementation - Throughput

0

5

10

15

20

25

30

35

40

45

AES-GCM Keyak ICEPOLE

G
b

/s

Virtex 6

Stratix IV

24 / 28

FPGA Implementation - Throughput/Area

0

5

10

15

20

25

30

AES-GCM Keyak ICEPOLE

[V
ir
te

x
 6

:
M

b
p

s
/s

lic
e

,
S

tr
a
ti
x
 I
V

:
M

b
p

s
/A

L
U

T
]

Virtex 6

Stratix IV

25 / 28

Software Implementation

straightforward C implementation compiled for speed (no beyond-C
optmization used)

9 cycles per byte on Intel Ivy Bridge (i5-3320M)

8 cycles per byte on Haswell (Intel Xeon E3 1275)

26 / 28

Conclusion

monkeyDuplex construction + very efficient permutation = ICEPOLE

highly efficient in modern FPGAs

very-high speed in modern FPGAs

good software performance

27 / 28

Questions

Questions?

Thank you!

Questions?

CERG: http:/cryptography.gmu.edu

28 / 28

	Motivation
	ICEPOLE specification
	ICEPOLE Security
	Software Implementation
	Conclusion
	Questions

