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Modern Public Key Schemes

• Modern public-key schemes

 RSA  difficulty of factoring problem

 DSA/ECDSA  difficulty of  Discrete Logarithm problem

• Intractable using classical computers

• Threat

 Quantum computers destroy RSA, DSA and ECDSA
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The Ring-LWE Problem

• Defined over a ring 

• A polynomial              is chosen uniformly

• The secret              is a fixed polynomial

• An error polynomial    is sampled from           

• Compute

• The ring-LWE distribution on                consists of tuples        
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• Search ring-LWE problem: given many              samples, find secret



Ring-LWE : Encryption Scheme
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The Encryption Scheme : Key Generation

• Key Generation :

• Choose two polynomials                    

• Compute 

• The secret key is 

• The public key is 
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• Encryption

• Input message m encoded to polynomial      : 

• Choose                          with coefficients from

• Ciphertext

• Decryption

• Decoding compares the decrypted message coefficients
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The Encryption Scheme : 

Encryption/Decryption



LWE Cryptosystem : Block Level Diagram
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Polynomials have 256 or 512 coefficients and each coefficient is 13 or 14 bit

Standard deviation is small  (less than 5)



Roadmap to Implementation

• Ring-LWE based encryption

 Primitives

 Discrete Gaussian Sampler

 Polynomial Multiplier

 Full cryptosystem
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• Discrete Gaussian sampler architecture  ---- (Presented in SAC 2013)

 Knuth-Yao random walk

High Precision Discrete Gaussian Sampling on FPGAs, SAC 2013



Polynomial Multiplication
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Polynomial Multiplication Algorithms

• Schoolbook  multiplication  : complexity n2

• Karatsuba multiplication : complexity n1.585

• FFT based multiplication : complexity  (n log n)

• Number Theoretic Transform (NTT) is a generalization of FFT

 n-th primitive root of unity in             

 Involves integer arithmetic modulo q
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Polynomial Multiplication : NTT
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• Polynomial multiplication :                                 

 2n point NTT :             



Polynomial Multiplication : NTT
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• Polynomial multiplication :                                 

 2n point NTT :             

• Special optimization :                                                 where

 Negative-wrapped convolution : using n point NTT

 is a power of two and prime  

 Scaling                                  and 



 Final scaling is required to compute c(x) from 



The basic NTT Algorithm 
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The NTT Algorithm 
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Fixed Computation Cost



NTT Core
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Pöppelmann et al.  Latincrypt 2012



Our Target : Compact Architecture
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• Minimize Memory Requirement



Optimization in Area
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This increases computation cost !



Computational Optimizations
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Optimization in Computation: Step 1 
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Reduction in fixed computation overhead

OurPöppelmann et al.  Latincrypt 2012

Aysu et al.  HOST 2013



Optimization in Computation: Step 2 
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• Forward negative wrapped NTT requires  pre-scaling of the input polynomials 

where           

• Our implementation is free from this pre-scaling

Reduction in the pre-scaling overhead



Optimization in Computation: Step 2 
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Optimization in Computation: Step 2 
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Reduction in pre-scaling overhead



Optimization Step 3 : Memory Access Scheme
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Memory Access : Motivation 1
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• Two coefficients are accessed from RAM

• One arithmetic operation is performed

• Two new coefficients are written in RAM

Arithmetic blocks remains idle



Memory Access : Motivation 2

26

• Xilinx BRAM Slice of 18Kb 

 Width of words : 36 bits

 Depth of RAM :  512

• Polynomials in LWE  

 LWE256 : q= 7681 (13 bit)

 LWE512 : q= 12289 (14 bit)

• Two coefficients can be stored in one word  



Our memory efficient NTT …
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Optimization : Memory Access 
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• In this scheme

 Two coefficients are in one word

 Two pairs are processed together



Optimization : Memory Access
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No idle cycles

BRAM efficiency 



Optimization : Ring-LWE Encryption Scheme
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Pöppelmann, SAC 2013

#NTT = 5

Encryption

Decryption

Encryption

Decryption

#NTT = 4

Our Scheme



The NTT Core
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The NTT Core
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Memory Efficient NTT
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core
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The NTT Core : Pipeline
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The Ring-LWE Cryptoprocessor
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Instruction Set

LOAD

ENCODE-LOAD

GAUSSIAN-LOAD

FNTT

INTT

ADD

CMULT

REARRANGE

READ   



Results
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Our Ring-LWE Cryptoprocessor : Results on 

Virtex 6
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Comparison with previous Ring-LWE 

Implementation 
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1    RLWE, Our Implementation

2    RLWE, Pöppelmann et al.  SAC 2013



Comparison with ECC (ECIES)
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1    RLWE, Our Implementation

2    ECC, Rebeiro et al.  CHES 2012



Conclusions and Future Work

Conclusions

• Hardware implementation of an instruction-set ring-LWE processor

• Optimizations in the NTT

• Architecture level accelerations

• Best area-time performance

Future Work

• Lattice based signature scheme and fully-homomorphic encryption  

• Discrete Gaussian sampling

• Larger polynomial multiplier
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Thank You
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Backup Slides
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Comparison with NTRU
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Comparison with McEliece
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1    RLWE, Our Implementation

2    McEliece Cryptosystem by Ghosh et al.  IEEE TC, 2014



All Comparisons
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