
1/14	

	

COFACTORIZATION
ON GPUs 	
 	
	

Andrea Miele1, 	

Joppe W. Bos2, 	

Thorsten Kleinjung1, 	

Arjen K. Lenstra1	

	

1LACAL, EPFL, Lausanne, Switzerland	

2NXP Semiconductors, Leuven, Belgium	

NUMBER FIELD SIEVE (NFS)	

•  Asymptotically fastest known factoring algorithm 	

•  RSA 768-bit modulus factored with NFS in 2010	

•  Idea: to factor an odd composite n, find solutions 	

	

•  Two main steps: ���
RELATION COLLECTION: find smooth integers ≈90%T���
LINEAR ALGEBRA STEP: find solutions (x,y) ≈10%T	

2/14	

	

\,] : \� �]� mod R ERH \ �� ±] mod R

NFS RELATIONS	

•  Two positive integer smoothness bounds: Br , Ba	

•  Irreducible fr(X), fa(X) of degree 1 and d small (d=5,6)	

•  Relation: (a,b) with a,b coprime integers (b>0) such that	

1.  bfr(a/b) is Br-smooth except ≤ 3 primes > Br and ≤ BL 	

2.  bdfa(a/b) is Ba-smooth except ≤ 4 primes > Ba and ≤ BL 	

	

	

3/14	

	

COLLECT RELATIONS	

	

SIEVING: find pairs (a,b) s.t. bfr(a/b) (bdfa(a/b)) is product of���
Br - smooth (Ba - smooth) part and “small” cofactor ≤ BL

3 (BL
4)	

	

POST SIEVING (NORMALLY 12-17% OF THE TOTAL TIME): ���
1 Compute bfr(a/b) and bdfa(a/b) ���
2 Remove small factors pair-by-pair (or re-sieve) ���
3 Factor cofactors pair-by-pair (COFACTORING) ���
	

EMBARRASSINGLY PARALLEL!���
���
���
���
	

4/14	

	

FASTER NFS WITH GPUs?	

•  SIEVING: memory hungry, done on CPUs	

•  PREVIOUSLY: offload ECM to GPUs or FPGAs 	

• IDEA: offload ALL POST SIEVING TO GPUs���
	

SIEVING	

2 CPUs + 1 GPU	

...	
 ...	

TIME	

TIME	

PS	
 SIEVING	
 PS	
 SIEVING	
 PS	

SIEVING	
 PS	
 SIEVING	
 PS	
 SIEVING	
 PS	

2 CPUs	

SIEVING	
...	
 ...	
SIEVING	

PS	

SIEVING	

SIEVING	

PS	

SIEVING	

SIEVING	

SIEVING	

SIEVING	

...	

PS	
 PS	

5/14	

	

GPUs, NOT ONLY GAMING…	

CORE	
 CORE	
 CORE	
 CORE	

CORE	
 CORE	
 CORE	
 CORE	

CORE	
 CORE	
 CORE	
 CORE	

64 KB Shared Memory / L1 Cache	

Register File (32-bit)	

64 KB Uniform Cache	

Instruction Cache	

Warp Sched	

Dispatch Unit	

.	

.	

.	

Streaming multiprocessor (SM)	

NVIDIA FERMI	

 (GTX 500 family)	

NVIDIA KEPLER
(GTX 700 family)	

Cores	
 Up to 512	
 Up to 2880	

SMs	
 Up to 16	
 Up to 48	

Freq	
 Up to 1544 MHz	
 Up to 980 MHz	

DRAM	
 Up to 3GB (192 GB/s)	
 Up to 6 GB (336 GB/s)	

L2 Cache	

...	

HOST IF	

SCHED	

DRAM	

SM	

SM	
SM	

SM	

SM	

SM	

...	

LD/ST	

LD/ST	

SFU	

SFU	

LD/ST	
 SFU	

Warp Sched	

Dispatch Unit	

Warp Sched	

Dispatch Unit	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

.	

Kernel Function	
 Thread Block (up to 1024
threads)	

Thread Warp (32
threads) ���
	

...	

...	

DRAM	

DRAM	

DRAM	

.	

.	

.	
.	

.	

.	

DRAM	

DRAM	

Massively parallel 32-bit many-core, GPGPU, transistors mainly used for arith	

One integer or floating point instruction/clock cycle per thread/core���

We usually run thousands of threads…���
	

6/14	

	

POST SIEVING ON GPUs	

•  Input: The set of candidate pairs (a,b) output by the sieve	

•  Output: Indices of pairs (a,b) that are relations (or factors found)	

•  Two CUDA Kernels run sequentially: 	

1.  Rational side: check bfr(a/b) for BL-smoothness (discard bad)	

2.  Algebraic side: check bdfa(a/b) for BL-smoothness (output indices)	

	

7/14	

	

Each thread processes one or more pairs (a,b) (task parallelism!) ���
���
+ No thread synch, high computing/mem access ratio���
- High register use (memory spilling…), less active threads	

KERNEL ANATOMY	

COFACTOR FACTORIZATION: REPEAT K TIMES	

1.  Group records in “buckets” according to #digits of value (distributed)	

2.  Factoring attempt: Pollard p-1 or ECM (unrolled code for bucket)	

3.  If factor found, divide out + pseudo primality (unrolled code for bucket)	

4.  Discard prime values > BL (or cut-off), put aside smooth values ≤	 BL 	

8/14	

	

PREAMBLE	

1.  Read pair (a,b) from global memory and evaluate polynomial	

2.  Remove small factors: trial division	

From now threads work on records: (value, index)	

KERNEL WORKFLOW	

160-bit	

Poly eval 	

+���
TD	

64-bit���
Bucket	

96-bit���
Bucket	

128-bit���
Bucket	

160-bit���
Bucket	

GOOD���
Bucket	
	

(a,b)	

	

	

	

	

96-bit P-1	

Group	

	

	

	

	

	

	

	

	

 96-bit ECM	

 64-bit ECM	

 128-bit ECM	

 160-bit ECM	

 128-bit P-1	

 160-bit P-1	

Group	

STEPS	

Group	
…	

9/14	

	

ABOUT THE
ALGORITHMS…	

•  Bivariate polynomial evaluation: ���
naive, no Horner	

•  Trial Division: ���
prime table in CMEM, divisibility test (Horner/Montgomery), exact div	

•  Pseudo primality test (Montgomery arithmetic): ���
Selfridge-Rabin-Miller	

•  Pollard P-1 (Montgomery arithmetic): ���
left-to-right modular exponentiation for stage 1, optimized BSGS for stage 2	

•  ECM (Montgomery arithmetic): ���
Twisted Edwards curves, add chains for stage 1, optimized BSGS for stage 2	

10/14	

	

INTEGRATION WITH
RSA-768 SOFTWARE	

11/14	

	

Finding good parameters for GPU kernels is hard!	

•  Preliminary experiments: rule out bad configurations	

•  We have run many experiments on RSA-768 datasets	

What to optimize for?	

•  We have fixed the yield, and looked for fastest configurations 	

•  Focus on two cases: 95% and 99% yield	

# Runs	
 Bounds (vals < 2256 , BL = 237)	

Trial Division	
 0-1 	
 B ≈	 210 	

Pollard p-1	
 1	
 B1≈	 210 , B2 ≈ 214 	

ECM	
 8-20	
 B1 = [28 , 210], B2 = [212 , 215]	

CPU vs GPU	

12/14	

	

Large
primes	

Input pairs	
 Tot time	
 Sieve
time	

PS-cof	

time	

Relations
found	

≤ 3	
 ≈ 5x105	
 29.6s	
 25.6s	
 4.0s	
 125	

≤ 4	
 ≈ 106	
 32.0s	
 25.9s	
 6.1s	
 137	

CPU: INTEL I7-3770K 4 cores 3.5 GHz 16GB RAM	

GPU: NVIDIA GTX 580 512 CORES 1544 MHz 1.5 GB RAM	

	

Large
primes	

Input
pairs	

Desired
yield	

CPU/GPU	

Ratio	

Time	
 Relations
found	

≤ 3	

	

≈ 5x105	
 95%	
 9.8	
 2.6s	
 132	

99%	
 6.9	
 3.7s	
 136	

≤ 4	

	

≈ 106	

	

95%	
 4.0	
 6.5s	
 159	

99%	
 2.7	
 9.6s	
 165	

1CPU vs 1CPU + 1GPU	

13/14	

	

Large
primes	

Input
pairs	

Setting	
 Total time	
 # Relations
found	

Relations/sec	

≤ 3	
 ≈ 5x107	
 No GPU	
 2961s	
 12523	
 4.23	

With GPU	
 2564s	
 13761	
 5.37	

≤ 4	
 ≈ 5x107	
 No GPU	
 1602s	
 6855	
 4.28	

With GPU	
 1300s	
 8302	
 6.39	

Large primes ≤ 3: 24% GAIN	

Large primes ≤ 4: 45% GAIN	

CONCLUSIONS AND
FUTURE WORK	

14/14	

•  GPUs are a good accelerator for post sieving	

•  Their use can reduce overall NFS factoring time	

•  We will make the code available	

•  Optimize for NVIDIA Kepler GPUs (AMD?)	

•  Get actual figures for RSA 1024-bit	

