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RSA Scheme & PKCS #1 standard

(Textbook) RSA

• N(= pq), ed ≡ 1 (mod (p− 1)(q − 1))

• Public Key (N, e), Secret Key d

• Encryption C = M e mod N

• Decryption M = Cd mod N

Speeding-up via Chinese Remainder Theorem
• Auxiliary Secret Key: dp = d mod p− 1, dq = d mod q − 1.

• Compute Mp = Cdp mod p and Mq = Cdq mod q.

• Find M s. t. M = Mp mod p and M = Mq mod q via CRT.

• Secret Key tuples (p, q, d, dp, dq, q
−1 mod p)

Secret keys have a redundancy.
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Side Channel Attacks against RSA

Extract related values to secret key (p, q, d, dp, dq) by physical
observation.

Correct Secret Key
Observation−−−−−−→
Leakage

Measured Value

p = 110011011 · · · 1
q = 100100110 · · · 1
d = 1 · · · 00111 · · · 1
dp = 10111110 · · · 10
dq = 11110110 · · · 100

Observation−−−−−−→
Leakage

p̃ = 100111011 · · · 1
q̃ = 100000111 · · · 1
d̃ = 1 · · · 00011 · · · 1
d̃p = 10111110 · · · 10
d̃q = 10010110 · · · 100

Denote by m the number of involved key in attacks.

Noboru Kunihiro (UTokyo, Japan) CHES2014@Busan, Korea September 25th, 2014 3 / 25



Previous Leakage Model for RSA

Discrete Leakage: Each bit is
• erased with prob. δ. (Heninger-Shacham (CRYPTO2009))

• bit-flipped with prob. ϵ. (Henecka-May-Meurer (CRYPTO2010))

• bit-flipped with asymmetric prob. (Paterson et al. (AC2012))

• erased with prob. δ and bit-Flipped with prob. ϵ.
(K-Shinohara-Izu (PKC2013)).

Is This Leakage Model Appropriate?
Analog data is more natural as observed data through the actual
physical attacks.

Our Goal
Propose efficient algorithms that recover RSA secret keys from noisy
analog data.
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Our Leakage Model

The observed value follows some fixed probability distribution
depending on the corresponding correct secret key.
ex.) additive white noise: b+ ϵ, ϵ ∼ N for b ∈ {0, 1}.

More formally,
• Let f0(y), f1(y) be probability density functions with average
1,−1. The observed value y follows

• f0(y) if the bit is 0 and
• f1(y) if the bit is 1.

• In our model, we obtain a single sample.

p = 1100110 · · ·
q = 1001001 · · ·
d = 1010010 · · ·
dp = 1110001 · · ·
dq = 1010101 · · ·

=⇒

p̃ = −1.21,−0.85,+0.34,−0.45,−0.47,−1.05,−0.05, · · ·
q̃ = −0.50,+0.12,−0.34,−1.67,−0.56,+0.23,−1.03, · · ·
d̃ = −0.92,+0.93,−0.74,+0.45,+0.97,−1.35,+0.05, · · ·
d̃p = +0.01,−0.12,−1.56,+1.67,+2.01,+0.93,−1.11, · · ·
d̃q = −0.50,+0.12,−0.34,+1.11,−0.56,+1.00,−1.08, · · ·
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Leakage Model (cont.)

Gaussian Distribution: N (µ, σ2)

Denote the Gaussian distribution with average µ and variance σ2.

Symmetric Leakage

If f0(y) = f1(−y), we say that f0 and f1 are symmetric.
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Naive Approach

Quantization Approach
• Set an adequate threshold and quantize the observed values into
0, 1 and ”?”.

• Apply the KSI algorithm to the quantized (discrete) values to
recover the secret key.

Results
• Consider a symmetric Gaussian case: fx(y) = N ((−1)x, σ2).

• If σ satisfies
0 ≤ σ < 1.533,

we can recover the secret key in polynomial time.
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Our Contributions

1 We propose two algorithms for recovering secret key from analog
observed data:

1 Maximum Likelihood Ratio Based (ML-based) Algorithm:
More effective than DPA-like Algorithm.

2 DPA-like Algorithm:
Works without knowledge of leakage distribution.

2 We derive the condition of f1 and f0 for recovering secret key.
• Consider the Gaussian noise case: fx = N ((−1)x, σ2). If it
satisfies

0 ≤ σ < 1.767,

we can recover the secret key in polynomial time.
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Common Framework

We use Tree-Based approach (proposed by Heninger and Shacham).

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)])

Assume we obtained a partial secret key up to slice(i− 1).

Constraints that each bits satisfies in secret key

p[i] + q[i] = c1 mod 2,

d[i+ τ(k)] + p[i] + q[i] = c2 mod 2,

dp[i+ τ(kp)] + p[i] = c3 mod 2,

dq[i+ τ(kq)] + q[i] = c4 mod 2.

Each bits in slice(i) have four constraints for five variables.
⇒ There are two candidates.
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Tree-based Approach

• Represent slice(i) by binary tree.

• Once the public key is fixed, the whole binary tree is uniquely
determined. The number of leafs in the tree is 2n/2.

• One of leafs corresponds to the correct secret key.

• Determine with an adequate rule whether each node is discarded
or remained by using observed sequence and candidate sequence.
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Generalized Algorithm

Score Function
• Introduce a score function.

• Syntax: Score(x,y).
• Candidate sequence: x = (x1, . . . , xmT ) ∈ {0, 1}mT .
• Observed sequence: y = (y1, . . . , ymT ) ∈ RmT .

• Score functions are designed that Score(x,y) becomes large if
x is a correct candidate.

Core of Generalized Algorithm

Expansion Phase Generate 2t nodes from remained L nodes.
Then, we have L2t nodes: x1,x2, . . . ,xL2t .

Pruning Phase Remain top L nodes with Score(xi,y) among L2t

nodes.
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Proposed Algorithm 1 (ML-based Algorithm)

Our Score Function
Use log likelihood ratio

RT (x,y) :=
1

mT

mT∑
i=1

log
fxi

(yi)

g(yi)

as a score function, where g(y) = (f1(y) + f0(y))/2.

Differential Entropy

h(f) is a differential entropy of f :

h(f) = −
∫

f(y) log f(y)dy.
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Main Theorem

Let R(x; y) = fx(y)
g(y)

for x ∈ {0, 1}. Define the mutual information by

I(X;Y ) = E[R(X;Y )]. Assume that I(X;Y ) and m satisfy

I(X;Y ) >
1

m
.

For any parameters (t, L), the failure probability of ML-based
Algorithm is less than

n

2t
ρ1L

−ρ2

for some ρ1, ρ2 > 0 which only depend on m and fx.
⇒ the failure probability converges to zero as L → ∞ for any t > 0.

Lemma
The I(X;Y ) is explicitly given by

I(X;Y ) = h

(
f0 + f1

2

)
− h(f0) + h(f1)

2
.
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Gaussian Leakage Case

Success Condition for Gaussian Leakage

Assume that fx = N ((−1)x, σ2). The success condition is explicitly
given by

σ < 1.767 for m = 5.

⇒ Superior to the quantization method.

Equivalent Form of Score Function for Gaussian
The order of score itself is important. Absolute value of score is not.
We ignore common terms to all candidates xi.

RT (x,y) :=
1

mT

mT∑
i=1

(−1)xiyi.
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How does ML-based Algorithm work?: Intuitive

The log-likelihood ratio

RT (x,y) =
1

mT

mT∑
i=1

log
fxi

(yi)

g(yi)

• For incorrect candidate x, E(RT (x,y)) = 0.

• For correct candidate x,

E(RT (x,y)) = h

(
f0 + f1

2

)
− h(f0) + h(f1)

2
(> 0).

The central limit theorem guarantees that RT (x,y) is near to its
expectation if T is large enough.

⇒ RT for the correct candidate is the highest with high prob.
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Proof Technique

Cramér’s Theorem
Let Z ∈ R be a random variable and Λ(λ) = lnE[exp(λZ)] be its
cumulant generating function. For independently and identically
distributed copies Z1, Z2, · · · , Zn of Z and any u ∈ R,

Pr

[
1

n

n∑
i=1

Zi ≥ u

]
≤ exp

(
−n sup

λ≥0
{λu− Λ(λ)}

)
.

We set

Zi = log
fbi(Xi)

g(Xi)
.
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Proof Sketch of Main Theorem (1/2)

Let u ∈
(

1
m
, h

(
f0+f1

2

)
− h(f0)+h(f1)

2

)
.

For correct candidate x

Since E[Zi(x)] = h
(
f0+f1

2

)
− h(f0)+h(f1)

2
, the probability that

RT (x,y) < u is less than

exp(−mTΛ∗(u)),

where Λ∗(u) = supλ≤0{λu− Λ(λ)}.

For incorrect candidate x
Since E[exp(Zi)(x)] = 1, the probability that RT (x,y) > u is less
than exp(−mTu).
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Proof Sketch of Main Theorem (2/2)

The condition that the correct candidate is pruned in each pruning
phase is given as follows:

For some u ∈
(

1
m
, h

(
f0+f1

2

)
− h(f0)+h(f1)

2

)
,

• The score RT (x,y) for a correct x is less than u.

• The number of incorrect x’s whose scores are bigger than u is
larger than or equal to L− 1.

Combining the above discussions, we have Main Theorem.
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Proposed Algorithm 2 (DPA-like Algorithm)

Dawback of ML-based Algorithm
We MUST know the exact noise distribution.

⇒ It is not practical.

New Score Function

DPA(x,y) :=
1

mT

mT∑
i=1

(−1)xiyi.

Consideration: The new DPA function
• depends on only x and y.

• can be calculated without knowledge of the specific form of
noise distributions.

• is the same as the Gaussian noise case.
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Our New DPA function: Intuitive

Transformation:

DPA(x,y) =
1

mT

 ∑
{i|xi=0}

yi −
∑

{i|xi=1}

yi


Very similar to difference-of-means distinguisher in
[KJJ@CRYPTO99].

Intuition:
• For correct candidate x, E(DPA(x,y)) = 1.

• For incorrect candidate x, E(DPA(x,y)) = 0.

• When T goes to ∞, DPA(x,y) converges to 1 and 0,
respectively.

• We can separate the correct candidate from incorrect one.
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Success Condition for DPA-like Algorithm

Main Theorem 2
Suppose that fx(y) is a probability density function with average
(−1)x and variance σ2

x. The success condition is given by

h

(
f0 + f1

2

)
− 1

2
log(πe(σ2

0 + σ2
1)) >

1

m
.

Symmetric Noise Case:
If f0 and f1 are symmetric, it will be

h

(
f0(x) + f0(−x)

2

)
− h(N (1, σ2)) >

1

m
.
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ML-based versus DPA-like method

Success Condition: Symmetric Leakage

h(g)− h(f) > 1/m for ML-based algorithm

h(g)− h(N (1, σ2)) > 1/m for DPA-like algorithm

Information Loss of DPA-like Score from ML-based score
can be expressed as

h(N (1, σ2))− h(f)(≥ 0).

It increases as the true noise distribution deviates from Gaussian.
The equality is attained if and only if f is the Gaussian.
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Implementation Results

Figure: Experiments for m = 5 and n = 1024 and various (t, L).

Noboru Kunihiro (UTokyo, Japan) CHES2014@Busan, Korea September 25th, 2014 23 / 25



Implementation Results II (For Fixed t)

Figure: m = 5, n = 1024 and t = 1 Figure: m = 5, n = 2048 and t = 1
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Conclusions

• Evaluated the security of RSA when the secret key bits are
leaked with some noise.

• Proposed two algorithms: ML-based and DPA-like algorithms.

• The ML-based algorithm can recover the secret key if

I(X;Y ) = h

(
f0 + f1

2

)
− h(f1) + h(f0)

2
>

1

m
.

• Assume that fx = N ((−1)x, σ2). It can recover the secret key
in polynomial time if σ < 1.767.

• For the DPA-like algorithm,
• Need not know leakage distributions.
• The success condition is slightly worse than ML-based algo.
• BUT, it is completely equivalent to that of ML-based algorithm
when the noise distribution is Gaussian.
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