
Making RSA-PSS Provably Secure Against Non-Random
Faults

Gilles Barthe (IMDEA) François Dupressoir (IMDEA)

Pierre-Alain Fouque (Univ. Rennes 1) Benjamin Grégoire (Inria)

Mehdi Tibouchi (NTT) Jean-Christophe Zapalowicz (Inria)

CHES 2014

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 1 / 16



RSA signatures

RSA signatures still widely used (Software & Embedded devices)

Chinese Remainder Theorem (CRT) technique for efficiency

Bellcore attack to avoid
I Fault attack
I Inject a fault during one of the half exponentiations
I Message + faulted signature ⇒ Secret key

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 2 / 16



RSA signatures

RSA signatures still widely used (Software & Embedded devices)

Chinese Remainder Theorem (CRT) technique for efficiency

Bellcore attack to avoid
I Fault attack
I Inject a fault during one of the half exponentiations
I Message + faulted signature ⇒ Secret key

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 2 / 16



RSA signatures

RSA signatures still widely used (Software & Embedded devices)

Chinese Remainder Theorem (CRT) technique for efficiency

Bellcore attack to avoid
I Fault attack
I Inject a fault during one of the half exponentiations
I Message + faulted signature ⇒ Secret key

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 2 / 16



RSA signatures and fault attacks

Bellcore attack (or some extensions) efficient against
no encoding
deterministic encodings
some randomized padding schemes (ISO 9796-2, EMV, ...)

But RSA-PSS (randomized padding scheme proposed by Bellare and
Rogaway, Eurocrypt 96) is secure against random faults
(proven by Coron and Mandal, Asiacrypt 2009)

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 3 / 16



RSA signatures and fault attacks

Bellcore attack (or some extensions) efficient against
no encoding
deterministic encodings
some randomized padding schemes (ISO 9796-2, EMV, ...)

But RSA-PSS (randomized padding scheme proposed by Bellare and
Rogaway, Eurocrypt 96) is secure against random faults
(proven by Coron and Mandal, Asiacrypt 2009)

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 3 / 16



RSA-PSS
h outputs bitstrings of length kh ({0, 1}∗ × {0, 1}k0 → {0, 1}kh)
g (mixing g1 and g2) outputs bitstrings of length kg ({0, 1}kh → {0, 1}kg )
kh + kg + 1 = n and k0 < kg

658 J.-S. Coron and A. Mandal

m r

ω

h

0 r∗ g2(ω)

g1(ω)

g1

g2

Fig. 1. PSS: the components of the image y = 0∥ω∥r∗∥g2(ω) are darkened. The signa-
ture of m is yd mod N .

Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(m∥r)
3. r∗ ← g1(ω)⊕ r
4. y ← 0∥ω∥r∗∥g2(ω)
5. Return σ = yd mod N

Signature Verification: given a message m and a signature σ, do the following:

1. Let y = σe mod N
2. Parse y as 0∥ω∥r∗∥γ. If the parsing fails return 0.
3. r ← r∗ ⊕ g1(ω)
4. If h(m∥r) = ω and g2(ω) = γ return 1.
5. else return 0.

3.2 Security Proof

We first give an intuition of the proof. We denote by µ(m, r) the PSS encoding
scheme, that is µ(m, r) = 0∥ω∥r∗∥g2(ω) where ω = h(m∥r) and r∗ = g1(ω)⊕ r.

We receive as input a challenge (N, e, η) and we must output ηd mod N . In
the original PSS security proof [2], when receiving a signature query, the simulator
generates a random α modulo N such that αe mod N can be written as 0∥ω∥s∥t.
The simulator generates a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) =
s⊕r and g2(ω) = t. Thereforewe have thatµ(m, r) = (αe mod N). The simulator
can then return α as a signature for m. When receiving a hash query for h(m, r),
the simulator generates a random α modulo N such that η · αe can be written as
0∥ω∥s∥t; it then proceeds as previously. In this case we have µ(m, r) = (η · αe

mod N). Therefore a forgery for µ(m, r) enables to compute ηd mod N .
One can see that if there is no collision on the randoms r used for signature

generation, and no collision on the values ω, then the simulation is perfect. Then

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 4 / 16



RSA signatures and fault attacks

Different non-random fault models proposed in 2012
(Fouque, Guillermin, Leresteux, Tibouchi, Zapalowicz, CHES 2012)

Require Montgomery multiplication to be used
Apply to any padding function

Our Goal:
To propose a countermeasure for RSA-PSS against a large class of
non-random faults
⇒ Extend Coron and Mandal’s result to a stronger model
To prove this countermeasure
To formally verify the proof with the tool EasyCrypt

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 5 / 16



RSA signatures and fault attacks

Different non-random fault models proposed in 2012
(Fouque, Guillermin, Leresteux, Tibouchi, Zapalowicz, CHES 2012)

Require Montgomery multiplication to be used
Apply to any padding function

Our Goal:
To propose a countermeasure for RSA-PSS against a large class of
non-random faults
⇒ Extend Coron and Mandal’s result to a stronger model
To prove this countermeasure
To formally verify the proof with the tool EasyCrypt

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 5 / 16



Fault model

Coron and Mandal’s fault model:

Correct value modulo p

Random value modulo q

Our fault model:

Correct value modulo p

Precise value modulo q fixed by the adversary

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 6 / 16



Countermeasure

Simplest protection against fault attacks: to verify the signature
y ′ = Se mod N

If y ′ = y then Return S Else Return Error

But a test can be bypassed ⇒ Infective countermeasure
A result released all the time
Gibberish when faulty computations occur

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 7 / 16



Countermeasure

Simplest protection against fault attacks: to verify the signature
y ′ = Se mod N

If y ′ = y then Return S Else Return Error

But a test can be bypassed ⇒ Infective countermeasure
A result released all the time
Gibberish when faulty computations occur

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 7 / 16



Protected signing algorithm

1: function Sign(sk, pk,m)
2: r ← {0, 1}k0 . Start of PSS padding
3: y ← PSS(m, r)

4: Sp ← ydp mod p . Signature computation
5: Sq ← ydq mod q
6: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p)
7: y ′ ← Se mod N
8: r ′ ← {0, 1}ρ . Infective countermeasure
9: S ′ ← S + r ′ · (y − y ′) mod N

10: return S ′

Size of r ′ (noted ρ) to define

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 8 / 16



Protected signing algorithm

1: function Sign(sk, pk,m)
2: r ← {0, 1}k0 . Start of PSS padding
3: y ← PSS(m, r)
4: Sp ← ydp mod p . Signature computation
5: Sq ← ydq mod q
6: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p)

7: y ′ ← Se mod N
8: r ′ ← {0, 1}ρ . Infective countermeasure
9: S ′ ← S + r ′ · (y − y ′) mod N

10: return S ′

Size of r ′ (noted ρ) to define

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 8 / 16



Protected signing algorithm

1: function Sign(sk, pk,m)
2: r ← {0, 1}k0 . Start of PSS padding
3: y ← PSS(m, r)
4: Sp ← ydp mod p . Signature computation
5: Sq ← ydq mod q
6: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p)
7: y ′ ← Se mod N

8: r ′ ← {0, 1}ρ . Infective countermeasure
9: S ′ ← S + r ′ · (y − y ′) mod N

10: return S ′

Size of r ′ (noted ρ) to define

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 8 / 16



Protected signing algorithm

1: function Sign(sk, pk,m)
2: r ← {0, 1}k0 . Start of PSS padding
3: y ← PSS(m, r)
4: Sp ← ydp mod p . Signature computation
5: Sq ← ydq mod q
6: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p)
7: y ′ ← Se mod N
8: r ′ ← {0, 1}ρ . Infective countermeasure
9: S ′ ← S + r ′ · (y − y ′) mod N

10: return S ′

Size of r ′ (noted ρ) to define

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 8 / 16



Protected signing algorithm

1: function Sign(sk, pk,m)
2: r ← {0, 1}k0 . Start of PSS padding
3: y ← PSS(m, r)
4: Sp ← ydp mod p . Signature computation
5: Sq ← ydq mod q
6: S ← (αp · Sp + αq · Sq) mod N . αp = q · (q−1 mod p)
7: y ′ ← Se mod N
8: r ′ ← {0, 1}ρ . Infective countermeasure
9: S ′ ← S + r ′ · (y − y ′) mod N

10: return S ′

Size of r ′ (noted ρ) to define

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 8 / 16



Challenger Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

UF-CMA Challenge

Challenger Adversary

e,N, y

x

y ≡ xe [N]

OW-RSA Challenge

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction (Bellare and Rogaway)

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with random faults (Coron and Mandal)

Simulator Adversary

e,N

mi , req, a

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F ′

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with non-random faults

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 9 / 16



Challenger Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

UF-CMA Challenge

Challenger Adversary

e,N, y

x

y ≡ xe [N]

OW-RSA Challenge

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction (Bellare and Rogaway)

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with random faults (Coron and Mandal)

Simulator Adversary

e,N

mi , req, a

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F ′

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with non-random faults

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 9 / 16



Challenger Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

UF-CMA Challenge

Challenger Adversary

e,N, y

x

y ≡ xe [N]

OW-RSA Challenge

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction (Bellare and Rogaway)

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with random faults (Coron and Mandal)

Simulator Adversary

e,N

mi , req, a

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F ′

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with non-random faults

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 9 / 16



Challenger Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

UF-CMA Challenge

Challenger Adversary

e,N, y

x

y ≡ xe [N]

OW-RSA Challenge

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction (Bellare and Rogaway)

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with random faults (Coron and Mandal)

Simulator Adversary

e,N

mi , req, a

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F ′

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with non-random faults

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 9 / 16



Challenger Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

UF-CMA Challenge

Challenger Adversary

e,N, y

x

y ≡ xe [N]

OW-RSA Challenge

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

(m,S)

H G S

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction (Bellare and Rogaway)

Simulator Adversary

e,N

mi , req

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with random faults (Coron and Mandal)

Simulator Adversary

e,N

mi , req, a

Si , h(mi ) or g(mi )

Si faulted
(m,S)

H G S F ′

Challenger

e,N, y

x

y ≡ xe [N]

RSA-PSS reduction with non-random faults

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 9 / 16



Main Theorem

1: game UF -CMA
2: (e, d ,N)← K ()
3: (m, s)← AS ,F ,H ,G(e,N)
4: b ← V (m, s)
5: win← b ∧ (m, s) /∈ Q S

6: return win

1: game OW -RSA
2: (e, d ,N)← K ()
3: x∗ ← [0..N)
4: y∗ ← x∗e mod N
5: x ← I(e,N, y∗)
6: return x = x∗

7 games later−−−−−−−−→

Result
Given a CMA adversary A against the faulty signature scheme
(K , S ,F ,V ), we build a one-way inverter I such that

Pr[UF -CMA : win] ≤ Pr[OW -RSA : x = x∗] + ε

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 10 / 16



Behind this theorem

Our proof follows the same path as Coron and Mandal’s proof

1 lemma for the distribution of the faulted signatures
Prove that the faulted signatures provide no information
We want to remove the computation of S ′ (which uses the secret key)

First lemma
{S ′ = yd · αp +

(
a+ r ′(y − ae)

)
· αq mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)}

{S ′ = yd + r ′y mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)} ≈s UN
⇒For large enough N, it suffices to take ρ slightly larger than a given ε to
obtain a statistical distance of 2−ε

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 11 / 16



Behind this theorem

Our proof follows the same path as Coron and Mandal’s proof

1 lemma for the distribution of the faulted signatures
Prove that the faulted signatures provide no information
We want to remove the computation of S ′ (which uses the secret key)

First lemma
{S ′ = yd · αp +

(
a+ r ′(y − ae)

)
· αq mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)}

{S ′ = yd + r ′y mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)} ≈s UN
⇒For large enough N, it suffices to take ρ slightly larger than a given ε to
obtain a statistical distance of 2−ε

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 11 / 16



Behind this theorem

Our proof follows the same path as Coron and Mandal’s proof

1 lemma for the distribution of the faulted signatures
Prove that the faulted signatures provide no information
We want to remove the computation of S ′ (which uses the secret key)

First lemma
{S ′ = yd · αp +

(
a+ r ′(y − ae)

)
· αq mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)}

{S ′ = yd + r ′y mod N | (y , r ′) ∈ [0, 2n−1)× [1, 2ρ)} ≈s UN
⇒For large enough N, it suffices to take ρ slightly larger than a given ε to
obtain a statistical distance of 2−ε

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 11 / 16



Behind this theorem

1 lemma for the probability of guessing ω given S ′

⇒ represents a bad event in the initial proof of RSA-PSS

Second lemma
Pr

[
ω = ω′|S ′

]
≤ 3/2kh

⇒ Requires ρ larger than kh

However counts are more difficult to perform because of our stronger fault
model
⇒ Use of more complex mathematic tools

Dirichlet characters sum
Generalized Riemann Hypothesis for best result on ρ
(can be replaced by Polya-Vinogradov inequality or Burgess bound,
but ρ increases)

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 12 / 16



Behind this theorem

1 lemma for the probability of guessing ω given S ′

⇒ represents a bad event in the initial proof of RSA-PSS

Second lemma
Pr

[
ω = ω′|S ′

]
≤ 3/2kh

⇒ Requires ρ larger than kh

However counts are more difficult to perform because of our stronger fault
model
⇒ Use of more complex mathematic tools

Dirichlet characters sum
Generalized Riemann Hypothesis for best result on ρ
(can be replaced by Polya-Vinogradov inequality or Burgess bound,
but ρ increases)

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 12 / 16



Formal verification
Our proof = Game-based proof
⇒ can be handled by a computer-aided tool
⇒ EasyCrypt

Game = Program & Games transition = Approximate program equivalence

EasyCrypt: SMT based interactive proof engine
Already done:

proof of standard crypto schemes (FDH, OAEP, ...)
proof of a OAEP implementation with side channel
Framework for building higher level tools

I ZooCrypt: Automatic synthesis of padding based encryption schemes
I Automatic verification of batch signature algorithms
I Automatic verification of assumptions in the generic group model
I Automatic synthesis of fault attacks

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 13 / 16



Without computer-aided tool:
Lot of work for writing a proof
Lot of work for trusting it

With computer-aided tool:
Lot of work for writing a proof
Easy to trust it

As an example, Coron and Mandal’s proof
Correct result
But glitch in the proof

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 14 / 16



Without computer-aided tool:
Lot of work for writing a proof
Lot of work for trusting it

With computer-aided tool:
Lot of work for writing a proof
Easy to trust it

As an example, Coron and Mandal’s proof
Correct result
But glitch in the proof

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 14 / 16



Without computer-aided tool:
Lot of work for writing a proof
Lot of work for trusting it

With computer-aided tool:
Lot of work for writing a proof
Easy to trust it

As an example, Coron and Mandal’s proof
Correct result
But glitch in the proof

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 14 / 16



Conclusion

Proven infective countermeasure for protecting RSA-PSS against a stronger
fault model

Proof verified with EasyCrypt

Another step towards the provable security in the context of fault attacks

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 15 / 16



Thank you for your
attention

Jean-Christophe Zapalowicz (Inria) CHES 2014 September, 25th 2014 16 / 16


