# Making RSA-PSS Provably Secure Against Non-Random Faults

Gilles Barthe (IMDEA)François Dupressoir (IMDEA)Pierre-Alain Fouque (Univ. Rennes 1)Benjamin Grégoire (Inria)Mehdi Tibouchi (NTT)Jean-Christophe Zapalowicz (Inria)

CHES 2014

#### **RSA** signatures

#### RSA signatures still widely used (Software & Embedded devices)

#### • Chinese Remainder Theorem (CRT) technique for efficiency

#### • Bellcore attack to avoid

- Fault attack
- Inject a fault during one of the half exponentiations
- ▶ Message + faulted signature ⇒ Secret key

#### **RSA** signatures

RSA signatures still widely used (Software & Embedded devices)

#### • Chinese Remainder Theorem (CRT) technique for efficiency

#### • Bellcore attack to avoid

- Fault attack
- Inject a fault during one of the half exponentiations
- ▶ Message + faulted signature ⇒ Secret key

#### **RSA** signatures

RSA signatures still widely used (Software & Embedded devices)

• Chinese Remainder Theorem (CRT) technique for efficiency

#### • Bellcore attack to avoid

- Fault attack
- Inject a fault during one of the half exponentiations
- ► Message + faulted signature ⇒ Secret key

# RSA signatures and fault attacks

Bellcore attack (or some extensions) efficient against

- no encoding
- deterministic encodings
- some randomized padding schemes (ISO 9796-2, EMV, ...)

# RSA signatures and fault attacks

Bellcore attack (or some extensions) efficient against

- no encoding
- deterministic encodings
- some randomized padding schemes (ISO 9796-2, EMV, ...)

**But RSA-PSS** (randomized padding scheme proposed by Bellare and Rogaway, Eurocrypt 96) is secure against random faults (proven by Coron and Mandal, Asiacrypt 2009)

#### **RSA-PSS**

*h* outputs bitstrings of length  $k_h$  ({0,1}\* × {0,1}<sup>k\_0</sup> → {0,1}<sup>k\_h</sup>) g (mixing  $g_1$  and  $g_2$ ) outputs bitstrings of length  $k_g$  ({0,1}<sup>k\_h</sup> → {0,1}<sup>k\_g</sup>)  $k_h + k_g + 1 = n$  and  $k_0 < k_g$ 



# RSA signatures and fault attacks

Different non-random fault models proposed in 2012 (Fouque, Guillermin, Leresteux, Tibouchi, Zapalowicz, CHES 2012)

- Require Montgomery multiplication to be used
- Apply to any padding function

# RSA signatures and fault attacks

Different non-random fault models proposed in 2012 (Fouque, Guillermin, Leresteux, Tibouchi, Zapalowicz, CHES 2012)

- Require Montgomery multiplication to be used
- Apply to any padding function

Our Goal:

- To propose a countermeasure for RSA-PSS against a large class of non-random faults
  - $\Rightarrow$  Extend Coron and Mandal's result to a stronger model
- To prove this countermeasure
- To formally verify the proof with the tool EasyCrypt

### Fault model

Coron and Mandal's fault model:

- Correct value modulo p
- Random value modulo q

Our fault model:

- Correct value modulo p
- Precise value modulo q fixed by the adversary

#### Countermeasure

Simplest protection against fault attacks: to verify the signature

• 
$$y' = S^e \mod N$$

• If y' = y then Return S Else Return Error

#### Countermeasure

Simplest protection against fault attacks: to verify the signature

• 
$$y' = S^e \mod N$$

• If y' = y then Return S Else Return Error

But a test can be bypassed  $\Rightarrow$  Infective countermeasure

- A result released all the time
- Gibberish when faulty computations occur

1: function Sign(sk, pk, m) 2:  $r \leftarrow \{0, 1\}^{k_0}$ 3:  $y \leftarrow PSS(m, r)$ 

▷ Start of PSS padding

1: function Sign(sk, pk, m)  
2: 
$$r \leftarrow \{0, 1\}^{k_0}$$
  
3:  $y \leftarrow PSS(m, r)$   
4:  $S_p \leftarrow y^{d_p} \mod p$   
5:  $S_q \leftarrow y^{d_q} \mod q$   
6:  $S \leftarrow (\alpha_p \cdot S_p + \alpha_q \cdot S_q) \mod N$ 

▷ Start of PSS padding

▷ Signature computation

$$\triangleright \alpha_p = q \cdot (q^{-1} \mod p)$$

1: function Sign(
$$sk$$
,  $pk$ ,  $m$ )  
2:  $r \leftarrow \{0, 1\}^{k_0}$   
3:  $y \leftarrow PSS(m, r)$   
4:  $S_p \leftarrow y^{d_p} \mod p$   
5:  $S_q \leftarrow y^{d_q} \mod q$   
6:  $S \leftarrow (\alpha_p \cdot S_p + \alpha_q \cdot S_q) \mod N$   
7:  $y' \leftarrow S^e \mod N$ 

▷ Start of PSS padding

▷ Signature computation

$$\triangleright \alpha_p = q \cdot (q^{-1} \bmod p)$$

1: function Sign(
$$sk$$
,  $pk$ ,  $m$ )  
2:  $r \leftarrow \{0, 1\}^{k_0}$   
3:  $y \leftarrow PSS(m, r)$   
4:  $S_p \leftarrow y^{d_p} \mod p$   
5:  $S_q \leftarrow y^{d_q} \mod q$   
6:  $S \leftarrow (\alpha_p \cdot S_p + \alpha_q \cdot S_q) \mod N$   
7:  $y' \leftarrow S^e \mod N$   
8:  $r' \leftarrow \{0, 1\}^{\rho}$   
9:  $S' \leftarrow S + r' \cdot (y - y') \mod N$   
10: return  $S'$ 

▷ Start of PSS padding

▷ Signature computation

 $\triangleright \alpha_p = q \cdot (q^{-1} \mod p)$ 

Infective countermeasure

1: function Sign(
$$sk$$
,  $pk$ ,  $m$ )  
2:  $r \leftarrow \{0, 1\}^{k_0}$   
3:  $y \leftarrow PSS(m, r)$   
4:  $S_p \leftarrow y^{d_p} \mod p$   
5:  $S_q \leftarrow y^{d_q} \mod q$   
6:  $S \leftarrow (\alpha_p \cdot S_p + \alpha_q \cdot S_q) \mod N$   
7:  $y' \leftarrow S^e \mod N$   
8:  $r' \leftarrow \{0, 1\}^{\rho}$   
9:  $S' \leftarrow S + r' \cdot (y - y') \mod N$   
10: return  $S'$ 

▷ Start of PSS padding

Signature computation

 $\triangleright \alpha_p = q \cdot (q^{-1} \mod p)$ 

Infective countermeasure

Size of r' (noted  $\rho$ ) to define



#### **UF-CMA** Challenge



#### **OW-RSA** Challenge



#### RSA-PSS reduction (Bellare and Rogaway)

CHES 2014



#### RSA-PSS reduction with random faults (Coron and Mandal)



#### RSA-PSS reduction with non-random faults

| Jean-C | hristop | he Zapal | lowicz ( | Inria) |  |
|--------|---------|----------|----------|--------|--|
|--------|---------|----------|----------|--------|--|

CHES 2014

# Main Theorem

1: game 
$$\mathcal{UF-CMA}$$
  
2:  $(e, d, N) \leftarrow \mathcal{K}()$   
3:  $(m, s) \leftarrow \mathcal{A}^{S, \mathcal{F}, \mathcal{H}, \mathcal{G}}(e, N)$   
4:  $b \leftarrow \mathcal{V}(m, s)$   
5:  $win \leftarrow b \land (m, s) \notin Q^{S}$   
6: return win

1: game 
$$OW-RSA$$
  
2:  $(e, d, N) \leftarrow \mathcal{K}()$   
3:  $x^* \leftarrow [0..N)$   
4:  $y^* \leftarrow x^{*e} \mod \Lambda$   
5:  $x \leftarrow \mathcal{I}(e, N, y^*)$   
6: return  $x = x^*$ 

7 games later

#### Result

Given a CMA adversary  $\mathcal{A}$  against the faulty signature scheme  $(\mathcal{K}, \mathcal{S}, \mathcal{F}, \mathcal{V})$ , we build a one-way inverter  $\mathcal{I}$  such that

 $\Pr[\mathcal{UF-CMA}: \textit{win}] \leq \Pr[\mathcal{OW-RSA}: x = x^*] + \varepsilon$ 

Our proof follows the same path as Coron and Mandal's proof

Our proof follows the same path as Coron and Mandal's proof

- 1 lemma for the distribution of the faulted signatures
  - Prove that the faulted signatures provide no information
  - We want to remove the computation of S' (which uses the secret key)

Our proof follows the same path as Coron and Mandal's proof

- 1 lemma for the distribution of the faulted signatures
  - Prove that the faulted signatures provide no information
  - We want to remove the computation of S' (which uses the secret key)

#### First lemma

 $\begin{array}{l} \{S' = y^d \cdot \alpha_p + \left(a + r'(y - a^e)\right) \cdot \alpha_q \bmod N \mid (y, r') \in [0, 2^{n-1}) \times [1, 2^{\rho}) \} \\ \{S' = y^d + r'y \bmod N \mid (y, r') \in [0, 2^{n-1}) \times [1, 2^{\rho}) \} \approx_{s} \mathcal{U}_N \\ \Rightarrow \text{For large enough } N, \text{ it suffices to take } \rho \text{ slightly larger than a given } \varepsilon \text{ to obtain a statistical distance of } 2^{-\varepsilon} \end{array}$ 

#### 1 lemma for the probability of guessing $\omega$ given S' $\Rightarrow$ represents a bad event in the initial proof of RSA-PSS

Second lemma  $\Pr \left[ \omega = \omega' | S' \right] \le 3/2^{k_h}$   $\Rightarrow \text{ Requires } \rho \text{ larger than } k_h$ 

1 lemma for the probability of guessing  $\omega$  given S' $\Rightarrow$  represents a bad event in the initial proof of RSA-PSS

Second lemma

 $\Pr\left[\omega = \omega' | S'\right] \le 3/2^{k_h} \\ \Rightarrow \text{Requires } \rho \text{ larger than } k_h$ 

However counts are more difficult to perform because of our stronger fault model

- $\Rightarrow$  Use of more complex mathematic tools
  - Dirichlet characters sum
  - Generalized Riemann Hypothesis for best result on  $\rho$  (can be replaced by Polya-Vinogradov inequality or Burgess bound, but  $\rho$  increases)

# Formal verification

- Our proof = Game-based proof
- $\Rightarrow$  can be handled by a computer-aided tool
- $\Rightarrow \mathsf{EasyCrypt}$

Game = Program & Games transition = Approximate program equivalence

**EasyCrypt**: SMT based interactive proof engine Already done:

- proof of standard crypto schemes (FDH, OAEP, ...)
- proof of a OAEP implementation with side channel
- Framework for building higher level tools
  - ZooCrypt: Automatic synthesis of padding based encryption schemes
  - Automatic verification of batch signature algorithms
  - Automatic verification of assumptions in the generic group model
  - Automatic synthesis of fault attacks

Without computer-aided tool:

- Lot of work for writing a proof
- Lot of work for trusting it

Without computer-aided tool:

- Lot of work for writing a proof
- Lot of work for trusting it

With computer-aided tool:

- Lot of work for writing a proof
- Easy to trust it

Without computer-aided tool:

- Lot of work for writing a proof
- Lot of work for trusting it

With computer-aided tool:

- Lot of work for writing a proof
- Easy to trust it

As an example, Coron and Mandal's proof

- Correct result
- But glitch in the proof

#### Conclusion

# Proven infective countermeasure for protecting RSA-PSS against a stronger fault model

Proof verified with EasyCrypt

Another step towards the provable security in the context of fault attacks

# Thank you for your attention