Secure Conversion Between Boolean and Arithmetic

Masking of Any Order

Jean-Sébastien Coron Johann GroBschadl Praveen Kumar Vadnala

University of Luxembourg, Luxembourg

CHES, 2014. Busan, Korea.

Countermeasures against side-channel attacks

e Hiding
e Shuffling, Dummy instructions, - - -
o Efficient but ad-hoc

Countermeasures against side-channel attacks

e Hiding
e Shuffling, Dummy instructions, - - -
o Efficient but ad-hoc

o Masking
e Each sensitive variable is masked with a random value
r (random)
—— Masking
x (s.v.)
xXO®r

e Second and higher order masking
o Higher the number of masks used, better the security
e Security can be proved

Masking types

@ Boolean masking

o Masked using XOR operation
o Compatible with: XOR, shift etc.

Masking types

@ Boolean masking

o Masked using XOR operation
o Compatible with: XOR, shift etc.

@ Arithmetic masking

e Multiplicative masking

Masking types

@ Boolean masking

o Masked using XOR operation
o Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

@ Conversion problem

Masking types

@ Boolean masking

o Masked using XOR operation
o Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

Conversion problem

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

This talk : Conversion between Boolean and arithmetic masking

First order secure conversion

Goubin solution (CHES, 2001)

e B—A: Constant number of operations
o A—B: Number of operations proportional to the size of the masked
data

Improved A—B solution by Coron and Tchulkine (CHES, 2003)
Blandine Debraize's solution (CHES, 2012)
Karroumi et al. secure addition (COSADE, 2014)

Higher order conversion

o No higher order conversion algorithms to date

@ Genralizing Goubin’s solution to higher order?

Higher order conversion

o No higher order conversion algorithms to date
@ Genralizing Goubin’s solution to higher order?

@ Second order secure conversion by Vadnala-GroBschadl at
SPACE-2013

o First step but inefficient in practice
o No generalization for any order

10/35

Our contributions

o First higher order secure conversion - Two approaches
e Perform addition directly on Boolean shares

11/35

Our contributions

o First higher order secure conversion - Two approaches

e Perform addition directly on Boolean shares
e Convert from one form to the other

12/35

Our contributions

o First higher order secure conversion - Two approaches

e Perform addition directly on Boolean shares
e Convert from one form to the other

@ Security proof in Ishai-Sahai and Wagner (ISW) framework
@ Application to HMAC-SHA-1

13/35

Proving masking schemes

@ Classical model
@ Limitations of classical model
o ISW framework

14/35

Security model: ISW framework

@ Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

15/35

Security model: ISW framework

@ Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T, I, O) such that
T maps any stateless circuit C of size |C| and depth d to a randomized
stateless circuit of size O(n?-|C|) and depth O(d log t), where n = 2t + 1.

16 /35

Security model: ISW framework

@ Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T, I, O) such that
T maps any stateless circuit C of size |C| and depth d to a randomized
stateless circuit of size O(n?-|C|) and depth O(d log t), where n = 2t + 1.

@ Represent the circuit C using only NOT and AND gates

@ Converting NOT gate is easy: if x =x1 ®xo P - -- P x, then
NOT(x) =NOT(x1) ®x2 & --- & xp

@ How to convert AND gate? SecAnd function

17 /35

Higher order secure addition

@ Represent modular addition as Boolean circuit

o Apply ISW method
@ Two approaches

e A modular addition of two k-bit variables x and y can be defined
recursively as (x + y)) = x() @ y() @ () where

c® =0
{ VI 2 1, C(i) — (X(ifl) /\y(ifl)) @ (X(’.fl) AN C(ifl)) @ (C(’.fl) /\y(”fl))

18/35

Higher order secure addition

@ Represent modular addition as Boolean circuit

o Apply ISW method
@ Two approaches

e A modular addition of two k-bit variables x and y can be defined
recursively as (x + y)) = x() @ y() @ () where

c® =0
{ VI 2 1, C(i) — (X(ifl) /\y(ifl)) @ (X(’.fl) AN C(ifl)) @ (C(’.fl) /\y(”fl))

e Use Goubin's formula: x4+ y = x® y ® ux_1, where ui_1 is obtained
from the following recursion formula:

U()ZO
Vi>0,uip1 =2[ui AN(xBy) B (xAy)]

19/35

Algorithm 1 SecAdd
Input: (x;) and (y;) for 1 <i<n

Output: (z) for 1 <i<n with Pz =P x + Py
i=1 i=1 i=1

1: (c,-(o))lg,-g,, +~0 > Initially carry is zero
2: for j = O to k —2 do > Compute carry bit by bit
3: (Xyl)1<,<n — SecAnd(((J)1<,<,,, (y’))1<,<,,) > X(") A\ y(J)
4: (XC))1<,<n < SecAnd (()1<,<n,((o)1<,<n) > xU) A W)
5. (¢!)icicn + SecAnd((yP)1<icn, (¢)1<i<n) > y0) A c0)
6 (V™ icicn + (0 cicn ® (xc)1<icn ® (e)1<icn

7: end for

8: (zi)1<i<n + (Xi)1<i<n ® (¥i)1<i<n ® (Ci)1<i<n pz=x+ty=x®ydc
9:

return (Z,')lg,'gn

20/35

Second variant

Algorithm 2 SecAddGoubin

Input: (x;) and (y;) for 1 <i<n

Output: (z;)for 1 <i<n with Pz =P x+ Py
i=1 i=1

i=1 i=

L (w)i<i<n < SecAnd((xi)1<i<n, (Vi)i<i<n) Pw=xAy

2: (ui)i<i<n <0 > Initialize shares of u to zero

3: (ai)i<i<n < (Xi)1<i<n ® (Vi)i<i<n ba=x®y

4: for j=1to k—1do

5: (uaj)1<i<n < SecAnd((ui)i<i<n, (3i)1<i<n)

6: (ui)i<i<n ¢ (uai)i<i<n ® (Wi)1<i<n

7 (ui)i<i<n < 2(ui)i<i<n bu+2Uuiadw)

8: end for

9: (zi)1<i<n < (Xi)1<i<n ® (Vi)1<i<n © (Ui)1<i<n PZ=x+y=xdydu
10: return (Z,')lg,'gn

21/35

@ Both algorithms have running time in O(n?k)

o SecAnd: O(n?)
o k size of the shares

@ In practice, second variant is more efficient

o Less calls to SecAnd function
e No need to perform bit manipulations

22/35

Secure conversion from arithmetic to Boolean masking:

Simple solution

@ Assume x = A1+ -+ A,
@ Re-share each of the arithmetic shares A; (1 < i < n) into n random
Boolean shares x;j (1 <j < n)sothat Ai=x1® - DXjn

T2,

A

23/35

Secure conversion from arithmetic to Boolean masking:

Simple solution

@ Assume x = A1+ -+ A,

@ Re-share each of the arithmetic shares A; (1 < i < n) into n random
Boolean shares x;j (1 <j < n)sothat Ai=x1® - DXjn

€y,
T2,

A

@ The sensitive variable x is now given as:

X=(x11® - ®xip)+ -+ (X1 D D Xnn)

24/35

Secure conversion from arithmetic to Boolean masking:

Simple solution

@ Now perform secure addition using one of the variants

Ay A, As -
SecAdd
SecAdd

SecAdd

A’!I,

r=x1D - Dwy

o Time complexity: O(nk)

25/35

Improved conversion from Arithmetic to Boolean masking

@ Use lesser shares at every step instead of n? shares

@ Build a bottom-up solution

Ay Ay . A,

1'11 1'12 1'22 1'22

26 /35

Improved conversion from Arithmetic to Boolean masking

@ Use lesser shares at every step instead of n? shares
@ Build a bottom-up solution

@ Start with two shares for every A;

1 N e Ve N

1'11 1'12 1'22 1'22

27/35

Improved conversion from Arithmetic to Boolean masking

@ At every step, halve the number of additive shares and double the
number of Boolean shares (Binary tree)

SN T N

T, T, T2, T2, Ty Ty

SecAdd

N

Yu Y2,

A A A !
Y1, Y1, Y, Y1,

o Number of shares < 2n at every level = O(n’k) complexity

28/35

Putting it altogether...

Algorithm 3 ConvertA—B

Input: (A;)) for1<i<n
Output: (z) for 1 <j<n, with Pz = > A

1: If n =1 then return A; =

2: (Xi)1<i<n/2 < ConvertA—B ((A)1<,<,,/2))) e i

30 (X)1<i<n < Expand ((xi)1<i<n/2)) PDX =@xi=3A
4: (¥i)i<i<n/2 < ConvertA—B ((A)n/2+1<,<,,)) o e o =

5: (y/)1<i<n < Expand ((yi)1<i<n/2)) > é}/i/ = ’EPIYI' = "Z;;H A
6: (zi)1<i<n < SecAdd ((x{)1<i<n, (¥])1<i<n)

7: return (zj)i<i<n > ,Ebn%lzl- = éxr‘l + _EnBly"l = Zn:lA"

29 /35

Secure conversion from Boolean to arithmetic masking

@ Given x =x1 ® - -+ @ x, compute A, -+, A, so that
x=A1+--+A,
o ldea: Take advantage of ConvertA—B and SecAdd

30/35

Secure conversion from Boolean to arithmetic masking

Given x =x1 @ - - - ® x, compute Ay, --- , A, so that
XxX=A1+---+A,

Idea: Take advantage of ConvertA—B and SecAdd

Generate (Aj)1<i<n—1 randomly

Compute Ay =x—(A1+ -+ A1) =x+ (A1 — - — A1)
Complexity : O(n?k), but inefficient compared to ConvertA—B

31/35

Experimental results

’ Algorithm \ Time \ rand ‘
second-order addition
Algorithm 1 87 1240
Algorithm 2 26 320
second-order conversion
Algorithm 3 54 4384
Algorithm B—A 81 822
third-order addition
Algorithm 1 156 | 2604
Algorithm 2 46 672
third-order conversion
Algorithm 3 121 | 1288
Algorithm B—A | 162 | 1997

Table : Execution times of all algorithms (in thousands of clock cycles) for
t = 2,3 and the number of calls to the rand function

32/35

Application to HMAC-SHA-1

’ Algorithm \ Time \ Penalty ‘
] HMAC-SHA-1 \ 104 \ 1 ‘
second-order addition
Algorithm 1 57172 549
Algorithm 2 17847 171

second-order conversion

Algorithm 3, B—A | 62669 | 602
third-order addition
Algorithm 1 106292 987
Algorithm 2 31195 299
third-order conversion
Algorithm 3, B—A \ 127348 \ 1224

Table : Execution times of second and third-order secure masking (in thousands
of clock cycles) and performance penalty compared to an unmasked

implementation of HMAC-SHA-1

33/35

Conclusion

@ First higher order secure B—A and A—B conversion
@ Proofs in ISW model

@ Generic solution: Applicable to number of cryptosystems

34/35

Conclusion

First higher order secure B—A and A—B conversion
Proofs in ISW model

Generic solution: Applicable to number of cryptosystems

Future work

e Improved solution for B—A?
e Improved solutions for n > 37

35/35

	Introduction
	Side channel attacks
	Countermeasures
	Masking types

	Secure addition
	Secure conversion from arithmetic to Boolean masking
	Secure conversion from Boolean to arithmetic masking
	Experimental results

