
Fast Evaluation of Polynomials over Binary Finite Fields

and Application to Side-channel Countermeasures

Jean-Sébastien Coron1, Arnab Roy1,2, Srinivas Vivek1

1University of Luxembourg

2DTU, Denmark

September 25, 2014

Outline

Background & previous work

Our results:

I new polynomial evaluation algorithm

I improved generic lower bound

Future work

Outline

Background & previous work

Motivation: Masking

Masking: effective countermeasure for block ciphers against DPA

attacks.

Approach: to split (secret share) every sensitive variable x .

I x = x0 ⊥ x1 ⊥ . . . ⊥ xd .

I ⊥: ⊕, or + over F2n .

I Masking Order: d .

I Order of security: t ≤ d .

Soundness: attack complexity is exponential w.r.t. t.

Motivation: Masking

Masking: effective countermeasure for block ciphers against DPA

attacks.

Approach: to split (secret share) every sensitive variable x .

I x = x0 ⊥ x1 ⊥ . . . ⊥ xd .

I ⊥: ⊕, or + over F2n .

I Masking Order: d .

I Order of security: t ≤ d .

Soundness: attack complexity is exponential w.r.t. t.

Motivation: Masking

Masking: effective countermeasure for block ciphers against DPA

attacks.

Approach: to split (secret share) every sensitive variable x .

I x = x0 ⊥ x1 ⊥ . . . ⊥ xd .

I ⊥: ⊕, or + over F2n .

I Masking Order: d .

I Order of security: t ≤ d .

Soundness: attack complexity is exponential w.r.t. t.

Higher-Order Masking

Higher-order attacks are feasible [Messerges, CHES 2000].

Both customized and generic countermeasures exists.

Generic higher-order masking schemes:

I arbitrary block ciphers (S-boxes).

I arbitrary masking order (i.e., shares).

Higher-Order Masking

Higher-order attacks are feasible [Messerges, CHES 2000].

Both customized and generic countermeasures exists.

Generic higher-order masking schemes:

I arbitrary block ciphers (S-boxes).

I arbitrary masking order (i.e., shares).

Higher-Order Masking

Higher-order attacks are feasible [Messerges, CHES 2000].

Both customized and generic countermeasures exists.

Generic higher-order masking schemes:

I arbitrary block ciphers (S-boxes).

I arbitrary masking order (i.e., shares).

Generic Higher-Order Masking Schemes

1 Prouff and Roche scheme (CHES 2011)

I based on MPC techniques.

2 CGPQR scheme by Carlet et al. (FSE 2012)

I based on polynomial representation of S-boxes.

3 Table recompuation method by Coron (EUROCRYPT 2014)

I based on randomized masking tables.

Other specialized higher-order schemes:

I GPQ scheme by Genelle et al. (CHES 2011): mainly for AES.

Generic Higher-Order Masking Schemes

1 Prouff and Roche scheme (CHES 2011)

I based on MPC techniques.

2 CGPQR scheme by Carlet et al. (FSE 2012)

I based on polynomial representation of S-boxes.

3 Table recompuation method by Coron (EUROCRYPT 2014)

I based on randomized masking tables.

Other specialized higher-order schemes:

I GPQ scheme by Genelle et al. (CHES 2011): mainly for AES.

Generic Higher-Order Masking Schemes

1 Prouff and Roche scheme (CHES 2011)

I based on MPC techniques.

2 CGPQR scheme by Carlet et al. (FSE 2012)

I based on polynomial representation of S-boxes.

3 Table recompuation method by Coron (EUROCRYPT 2014)

I based on randomized masking tables.

Other specialized higher-order schemes:

I GPQ scheme by Genelle et al. (CHES 2011): mainly for AES.

Generic Higher-Order Masking Schemes

1 Prouff and Roche scheme (CHES 2011)

I based on MPC techniques.

2 CGPQR scheme by Carlet et al. (FSE 2012)

I based on polynomial representation of S-boxes.

3 Table recompuation method by Coron (EUROCRYPT 2014)

I based on randomized masking tables.

Other specialized higher-order schemes:

I GPQ scheme by Genelle et al. (CHES 2011): mainly for AES.

CGPQR H-O Masking Scheme

Based on the probing circuit model by [ISW, CRYPTO 2003] and

later extended by [PR, CHES 2010].

Provides tthorder security when d ≥ 2t.

Advantages:

I More efficient than [PR11], comparable to [Coron14].

I Smaller memory and randomness requirement than [Coron14].

Recent works: [CPRR, FSE 2013], [RV, CHES 2013].

CGPQR H-O Masking Scheme

Based on the probing circuit model by [ISW, CRYPTO 2003] and

later extended by [PR, CHES 2010].

Provides tthorder security when d ≥ 2t.

Advantages:

I More efficient than [PR11], comparable to [Coron14].

I Smaller memory and randomness requirement than [Coron14].

Recent works: [CPRR, FSE 2013], [RV, CHES 2013].

CGPQR H-O Masking Scheme

Based on the probing circuit model by [ISW, CRYPTO 2003] and

later extended by [PR, CHES 2010].

Provides tthorder security when d ≥ 2t.

Advantages:

I More efficient than [PR11], comparable to [Coron14].

I Smaller memory and randomness requirement than [Coron14].

Recent works: [CPRR, FSE 2013], [RV, CHES 2013].

CGPQR H-O Masking Scheme

Based on the probing circuit model by [ISW, CRYPTO 2003] and

later extended by [PR, CHES 2010].

Provides tthorder security when d ≥ 2t.

Advantages:

I More efficient than [PR11], comparable to [Coron14].

I Smaller memory and randomness requirement than [Coron14].

Recent works: [CPRR, FSE 2013], [RV, CHES 2013].

CGPQR Scheme (Cont’d)

Main challenge for masking block ciphers: masking of S-boxes.

Reason: F2-linear/-affine functions are easy to mask:

I flin(x) = flin(x0 + · · ·+ xd) = flin(x0) + · · ·+ flin(xd).

Squaring is F2-linear in F2n : (a + b)2 = a2 + b2.

CGPQR Scheme (Cont’d)

Main challenge for masking block ciphers: masking of S-boxes.

Reason: F2-linear/-affine functions are easy to mask:

I flin(x) = flin(x0 + · · ·+ xd) = flin(x0) + · · ·+ flin(xd).

Squaring is F2-linear in F2n : (a + b)2 = a2 + b2.

CGPQR Scheme (Cont’d)

Main challenge for masking block ciphers: masking of S-boxes.

Reason: F2-linear/-affine functions are easy to mask:

I flin(x) = flin(x0 + · · ·+ xd) = flin(x0) + · · ·+ flin(xd).

Squaring is F2-linear in F2n : (a + b)2 = a2 + b2.

CGPQR Scheme (Cont’d)

An (n,m)-S-box (m ≤ n) can be identified with f : F2n → F2n .

By Lagrange interpolation,

I f (·) can be (uniquely) represented by P(x) ∈ F2n [x],

deg(P(x)) ≤ 2n − 1.

Masking an S-box =⇒ securely evaluating the corresponding

polynomial with shares.

CGPQR Scheme (Cont’d)

An (n,m)-S-box (m ≤ n) can be identified with f : F2n → F2n .

By Lagrange interpolation,

I f (·) can be (uniquely) represented by P(x) ∈ F2n [x],

deg(P(x)) ≤ 2n − 1.

Masking an S-box =⇒ securely evaluating the corresponding

polynomial with shares.

CGPQR Scheme (Cont’d)

An (n,m)-S-box (m ≤ n) can be identified with f : F2n → F2n .

By Lagrange interpolation,

I f (·) can be (uniquely) represented by P(x) ∈ F2n [x],

deg(P(x)) ≤ 2n − 1.

Masking an S-box =⇒ securely evaluating the corresponding

polynomial with shares.

CGPQR Scheme (Cont’d)

Task is to evaluate P(x) on (shared) input (x0, · · · , xd).

To evaluate any polynomial P(x) ∈ F2n [x], we need:

I Linear operations: (polynomial) addition, multiplication by a scalar,

(polynomial) squaring.

I Non-Linear Multiplications (NLMs).

Each step above to be performed securely on the shares:

I Linear operations with shares are cheap: O(d) time and randomness.

I NLMs with shares are expensive: O(d2) time and randomness.

CGPQR Scheme (Cont’d)

Task is to evaluate P(x) on (shared) input (x0, · · · , xd).

To evaluate any polynomial P(x) ∈ F2n [x], we need:

I Linear operations: (polynomial) addition, multiplication by a scalar,

(polynomial) squaring.

I Non-Linear Multiplications (NLMs).

Each step above to be performed securely on the shares:

I Linear operations with shares are cheap: O(d) time and randomness.

I NLMs with shares are expensive: O(d2) time and randomness.

CGPQR Scheme (Cont’d)

Task is to evaluate P(x) on (shared) input (x0, · · · , xd).

To evaluate any polynomial P(x) ∈ F2n [x], we need:

I Linear operations: (polynomial) addition, multiplication by a scalar,

(polynomial) squaring.

I Non-Linear Multiplications (NLMs).

Each step above to be performed securely on the shares:

I Linear operations with shares are cheap: O(d) time and randomness.

I NLMs with shares are expensive: O(d2) time and randomness.

F2n-Polynomial Evaluation: Cost Model

To evaluate any polynomial P(x) ∈ F2n [x], given x .

Ignore: (polynomial) additions, scalar multiplications, (polynomial)

squarings.

Count: non-linear (polynomial) multiplications.

Example: Consider q(x) 6= r(x) ∈ F2n [x], c ∈ F2n ,

I ignore: q(x) + r(x), c · q(x), (q(x))2

I count: q(x)× r(x)

F2n-Polynomial Evaluation: Cost Model

To evaluate any polynomial P(x) ∈ F2n [x], given x .

Ignore: (polynomial) additions, scalar multiplications, (polynomial)

squarings.

Count: non-linear (polynomial) multiplications.

Example: Consider q(x) 6= r(x) ∈ F2n [x], c ∈ F2n ,

I ignore: q(x) + r(x), c · q(x), (q(x))2

I count: q(x)× r(x)

F2n-Polynomial Evaluation: Cost Model

To evaluate any polynomial P(x) ∈ F2n [x], given x .

Ignore: (polynomial) additions, scalar multiplications, (polynomial)

squarings.

Count: non-linear (polynomial) multiplications.

Example: Consider q(x) 6= r(x) ∈ F2n [x], c ∈ F2n ,

I ignore: q(x) + r(x), c · q(x), (q(x))2

I count: q(x)× r(x)

F2n-Polynomial Evaluation: Cost Model

To evaluate any polynomial P(x) ∈ F2n [x], given x .

Ignore: (polynomial) additions, scalar multiplications, (polynomial)

squarings.

Count: non-linear (polynomial) multiplications.

Example: Consider q(x) 6= r(x) ∈ F2n [x], c ∈ F2n ,

I ignore: q(x) + r(x), c · q(x), (q(x))2

I count: q(x)× r(x)

Previous Evaluation Methods

1 Cyclotomic Class Method [CGQPR12],

I worst-case complexity: atleast 2n/n NLMs.

2 Parity-Split Method [CGQPR12],

I worst-case complexity: 1.5 ·
√

2n NLMs.

3 Divide-and-Conquer Method [PS73, RV13],

I non-generic: degree 2n = N ≈
√
N
(
2i − 1

)
.

I complexity:≈
√

2n NLMs.

Previous Evaluation Methods

1 Cyclotomic Class Method [CGQPR12],

I worst-case complexity: atleast 2n/n NLMs.

2 Parity-Split Method [CGQPR12],

I worst-case complexity: 1.5 ·
√

2n NLMs.

3 Divide-and-Conquer Method [PS73, RV13],

I non-generic: degree 2n = N ≈
√
N
(
2i − 1

)
.

I complexity:≈
√

2n NLMs.

Previous Evaluation Methods

1 Cyclotomic Class Method [CGQPR12],

I worst-case complexity: atleast 2n/n NLMs.

2 Parity-Split Method [CGQPR12],

I worst-case complexity: 1.5 ·
√

2n NLMs.

3 Divide-and-Conquer Method [PS73, RV13],

I non-generic: degree 2n = N ≈
√
N
(
2i − 1

)
.

I complexity:≈
√

2n NLMs.

Outline

Our results

Our Results

New polynomial evaluation algorithm (over F2n):

I (Heuristic) worst-case complexity: ≈ 2 ·
√

2n

n NLMs.

I Previous best: O
(√

2n
)

NLMs.

New generic lower bound on evaluation complexity:

I Lower bound: ≈
√

2n

n NLMs.

I Previous best: ≈ log2 n NLMs.

Our Results

New polynomial evaluation algorithm (over F2n):

I (Heuristic) worst-case complexity: ≈ 2 ·
√

2n

n NLMs.

I Previous best: O
(√

2n
)

NLMs.

New generic lower bound on evaluation complexity:

I Lower bound: ≈
√

2n

n NLMs.

I Previous best: ≈ log2 n NLMs.

Comparison of Generic Methods

n 4 5 6 7 8 9 10

Cyclotomic-Class method [CGPQR12] 3 5 11 17 33 53 105

Parity-Split method [CGPQR12] 4 6 10 14 22 30 46

This work 2 4 5 7 10 14 19

Table: Counting non-linear multiplications

Application to S-boxes

S-box

Method DES PRESENT SERPENT CAMELLIA CLEFIA

Cyclo.-Class method [CGPQR12] 11 3 3 33 33

Parity-Split [CGPQR12] 10 4 4 22 22

Roy-Vivek [RV13] 7 3 3 15 15,16

This work 4 2 2 10 10

Table: Number of NLMs required for the CGPQR masking scheme.

Our Results: Evaluation Method

1 Precompute a “closed” set xL =
{
x i | i ∈ L

}
of monomials,

I “closed” w.r.t. squaring.

2 Generate t − 1 random polynomials qi (x)
$← P(xL).

3 Find t polynomials pi (x) ∈ P(xL) such that

P(x) =
t−1∑
i=1

pi (x) · qi (x) + pt(x).

4 Solve a linear system for the unknown coefficients,

I similar to the Lagrange interpolation technique.

Our Results: Evaluation Method

1 Precompute a “closed” set xL =
{
x i | i ∈ L

}
of monomials,

I “closed” w.r.t. squaring.

2 Generate t − 1 random polynomials qi (x)
$← P(xL).

3 Find t polynomials pi (x) ∈ P(xL) such that

P(x) =
t−1∑
i=1

pi (x) · qi (x) + pt(x).

4 Solve a linear system for the unknown coefficients,

I similar to the Lagrange interpolation technique.

Our Results: Evaluation Method

1 Precompute a “closed” set xL =
{
x i | i ∈ L

}
of monomials,

I “closed” w.r.t. squaring.

2 Generate t − 1 random polynomials qi (x)
$← P(xL).

3 Find t polynomials pi (x) ∈ P(xL) such that

P(x) =
t−1∑
i=1

pi (x) · qi (x) + pt(x).

4 Solve a linear system for the unknown coefficients,

I similar to the Lagrange interpolation technique.

Our Results: Evaluation Method

1 Precompute a “closed” set xL =
{
x i | i ∈ L

}
of monomials,

I “closed” w.r.t. squaring.

2 Generate t − 1 random polynomials qi (x)
$← P(xL).

3 Find t polynomials pi (x) ∈ P(xL) such that

P(x) =
t−1∑
i=1

pi (x) · qi (x) + pt(x).

4 Solve a linear system for the unknown coefficients,

I similar to the Lagrange interpolation technique.

Evaluation Method: Analysis

Heuristic: full rank if t · |L| ≥ 2n.

Total NLMs: Nmult ≈ ` + t.

Optimal values: t ≈ ` ≈
√

2n

n .

I Nmult ≈ 2 ·
√

2n

n .

Open problem: existence of L, and condition for full rank.

Evaluation Method: Analysis

Heuristic: full rank if t · |L| ≥ 2n.

Total NLMs: Nmult ≈ ` + t.

Optimal values: t ≈ ` ≈
√

2n

n .

I Nmult ≈ 2 ·
√

2n

n .

Open problem: existence of L, and condition for full rank.

Evaluation Method: Analysis

Heuristic: full rank if t · |L| ≥ 2n.

Total NLMs: Nmult ≈ ` + t.

Optimal values: t ≈ ` ≈
√

2n

n .

I Nmult ≈ 2 ·
√

2n

n .

Open problem: existence of L, and condition for full rank.

Evaluation Method: Analysis

Heuristic: full rank if t · |L| ≥ 2n.

Total NLMs: Nmult ≈ ` + t.

Optimal values: t ≈ ` ≈
√

2n

n .

I Nmult ≈ 2 ·
√

2n

n .

Open problem: existence of L, and condition for full rank.

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Evaluation Method: Optimization

Example: DES (6, 4)-bit S-boxes.

I Ignore leading two bits =⇒ 2128 possible representations.

I Choose L = C0 ∪ C1 ∪ C3 ∪ C7, and q1(x), q2(x)
$← P(xL).

I Find the decomposition: P(x) = p1(x) · q1(x) + p2(x) · q2(x) + p3(x).

I For each xj ∈ F26 , we get 4 equations over F2.

I Resulting matrix needs to have rank 256 only (not 384 = 6× 64).

I Need only 4 NLMs (instead of 5 NLMs).

Implementation for DES

No. of shares

Method 3 5 7 9 11 13

Roy-Vivek [RV13] 0.193 0.347 0.533 0.765 1.040 1.349

Table Recomputation [Coron14] 0.096 0.221 0.413 0.597 0.893 1.409

This work 0.250 0.417 0.603 0.819 1.051 1.312

Table: Implementation in C on Intel Core i7. Execution time in ms.

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial P(x) ∈ F2n [x] such that

NLM(P(x)) ≥
√

2n

n − 2.

Significant improvement over dlog2 (n − 1)e bound [RV13].

Proof based on a counting argument, similar to [PS73].

I No. of possible polynomials using r NLMs ≥ (2n)2
n

.

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial P(x) ∈ F2n [x] such that

NLM(P(x)) ≥
√

2n

n − 2.

Significant improvement over dlog2 (n − 1)e bound [RV13].

Proof based on a counting argument, similar to [PS73].

I No. of possible polynomials using r NLMs ≥ (2n)2
n

.

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial P(x) ∈ F2n [x] such that

NLM(P(x)) ≥
√

2n

n − 2.

Significant improvement over dlog2 (n − 1)e bound [RV13].

Proof based on a counting argument, similar to [PS73].

I No. of possible polynomials using r NLMs ≥ (2n)2
n

.

Generic Lower Bounds: Comparison

n 4 5 6 7 8 9 10 11 12

[RV13] 2 2 3 3 4 4 4 4 4

This work 0 1 2 3 4 6 9 12 17

Table: Lower bounds for non-linear complexity.

Future Work

1 Rigorously prove the complexity of the new evaluation method.

2 Solve multivariate quadratic system to obtain

P(x) =
(t−1)/2∑
i=1

pi (x) · qi (x) + pt(x).

3 Improve concrete lower/upper complexity bounds.

1 Evaluate DES with only 3 NLMs.

4 Investigate further the cost model of [GPS, AFRICACRYPT 2014].

Future Work

1 Rigorously prove the complexity of the new evaluation method.

2 Solve multivariate quadratic system to obtain

P(x) =
(t−1)/2∑
i=1

pi (x) · qi (x) + pt(x).

3 Improve concrete lower/upper complexity bounds.

1 Evaluate DES with only 3 NLMs.

4 Investigate further the cost model of [GPS, AFRICACRYPT 2014].

Future Work

1 Rigorously prove the complexity of the new evaluation method.

2 Solve multivariate quadratic system to obtain

P(x) =
(t−1)/2∑
i=1

pi (x) · qi (x) + pt(x).

3 Improve concrete lower/upper complexity bounds.

1 Evaluate DES with only 3 NLMs.

4 Investigate further the cost model of [GPS, AFRICACRYPT 2014].

Future Work

1 Rigorously prove the complexity of the new evaluation method.

2 Solve multivariate quadratic system to obtain

P(x) =
(t−1)/2∑
i=1

pi (x) · qi (x) + pt(x).

3 Improve concrete lower/upper complexity bounds.

1 Evaluate DES with only 3 NLMs.

4 Investigate further the cost model of [GPS, AFRICACRYPT 2014].

Thank You!

&

Questions?

