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Outline

• Algorithmic confusion analysis for power analysis 

attack
• Confusion coefficient for DPA, CPA – κ (ki, kj)

• Model for DPA/CPA, success rate

• Success rate for higher order centered product 

combination attack (higher order CPA) on 

masking countermeasures

• Equivalence between the maximum-likelihood 

(ML) attack and the centered product 

combination attack
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Preliminaries ([CHES 2012]): Algorithmic 

Confusion Analysis for mono-bit DPA 

• Confusion coefficient:  an algorithmic metric to 

reveal key distinguishability

• Confusion coefficient between two keys (ki, kj): 

• Three-way confusion coefficient: 

• Confusion Lemma :
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Statistical Model for DPA ([CHES 2012])

• Power consumption leakage model with additive 

Gaussian noises: 

• lm (leakage), vm = ψ(xm, k) is the select function, and rm is the 

random noise, following a Gaussian distribution N(0, 1)

• Signal-to-noise ratio of the side channel:  

• For DPA model, the distance of means (DoM) attack 

where μ and ∑ are expressed by SNR and confusion 

coefficients. 
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Extension to CPA

• vm is Hamming distance/weight of multiple bits.

• Two-way confusion coefficient: 

• Three-way confusion coefficient: 

• Confusion lemma still holds for: 
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Success Rates for 1st Order CPA

• Under the CPA model: 

• κ is called the “confusion vector”, consisting of Nk-1 two-way 

confusion coefficients κ(kc,kg)

• K and K* are “confusion matrices”, (Nk-1)x(Nk-1), consisting of three-

way confusion coefficients                                 and 

• The success rate of the CPA (unmasked): 

• http://eprint.iacr.org/ Report 2014/152 
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Experimental Results for DES

• Confusion matrix K of DPA on the first bit of the first SBox
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Confusion matrix K of DPA Diagonal of K – confusion vector κ of DPA



Results for DES (II)

• Confusion matrix K of CPA on the first DES SBox
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Confusion matrix K of CPA Diagonal of K – confusion vector κ of CPA



DPA vs. CPA

• DPA is a special case of CPA

• Under DPA model,  K = K* 

• When the SNR is small, all the success rate (for ML 

attack, DPA, and CPA) become: 
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2nd Order CPA on Masked Devices

• Using two leakage times points: one leaks 

mask M and the other leaks Z(x, k)   M.

• Time point    : 

• Time point    :

with                      and                           , 

• 2nd Order CPA: maximum correlation 

between the centered product of L(t0)L(t1) 

and HW(Z).
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Success Rates (SR) for 2nd Order CPA

• Under the Hamming Weight/Distance model: 

• κ , K and K* are exactly the same as in the 

unmasked case. 

• The formula does not assume Gaussian noise.

• Including second term, SR formula fits simulated 

SR for moderate SNR≈1 

11

2 2

0 1

1

4
 μ κ

2 2 2 2 4 4

0 1 0 1 0 1

1
(1 )(1 ) (2 * )

4 4 16 2

Tb b b
          Σ K K K κκ



Success Rates for 2nd Order Attack

Black is the theoretical, Red is the simulated SR for CPA, blue for ML
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Use SR formula for 2nd Order CPA

• Quantify masking effect explicitly (small SNR): 

o2nd Order CPA (leading term, for small SNR): 

oVersus unmasked CPA: 

• Masking increasing required sample size by 

(2/δ)2

• Faster evaluation: find SNR δ then plug-in.

• In next slide, find SNR from 10,000 traces, 

compare SR to empirical SR from 1.4M traces
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Success Rates for 2nd Order Attack
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Empirical versus theoretical success 

rates on measurement data of a 

masked AES FPGA implementation

Empirical versus theoretical success 

rates on simulated data with Lapalace

noise instead of Gaussian noise.



Higher Order CPA Success Rate

• J masks, process 

• J+1 order attack, at time points

leaks                         and

• Success Rate:
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Success Rates for 3rd Order Attack

Empirical versus theoretical success rates on simulated 

data, SNR=0.2
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2nd Order Maximum Likelihood ML-Attack 

• The ML-attack statistic T:

• The likelihood iterates over all possible mask values in  

• The iteration is of order        , and would increase 

exponentially with the order of masks. 

• For Gaussian noises, this is a mixture Gaussian density.
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2nd Order Attack Model

• When SNRs               ,              , the ML-attack 

statistic      has key-independent limit
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2nd Order Attack Approximation

• When SNRs               ,              , do a Taylor 

expansion within the                          operation, 

and on the log[.] 

• The first term after        operation is key 

independent. The key selection happens on the 

second term, which is equivalent to the centered 

product combination attack (2O CPA) statistic  

with  

, for Hamming Weights 

model,                                 
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For Higher Order Masking

• The centered product combination attack is 

the strongest possible attack for noisy 

(small SNRs) situation, Gaussian noise. 

• Generally, the key selection happens on 

the second term of Taylor expansion: can 

find efficient attack asymptotic equivalent to 

ML-attack. (J+1)th for J order masking.

• Valid Taylor Approximation when the noise 

density has continuous third derivative. 
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