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Outline

- Algorithmic confusion analysis for power analysis
attack
- Confusion coefficient for DPA, CPA — « (k;, k;)

- Model for DPA/CPA, success rate

- Success rate for higher order centered product
combination attack (higher order CPA) on
masking countermeasures

- Equivalence between the maximume-likelihood
(ML) attack and the centered product
combination attack



Preliminaries ([CHES 2012]): Algorithmic

Confusion Analysis for mono-bit DPA

- Confusion coefficient: an algorithmic metric to
reveal key distinguishability

- Confusion coefficient between two keys (k;, k;):

k= k(K k; )= PrL(V [k ) % (V k)] =

N(Vlki >#(Vik;)

Nt

- Three-way confusion coefficient:
E:E(kh’ki’kj): Pri(V [k )=(V[k;).(V Ik,)=(V [k )]

- Confusion Lemma :
Ry ki, ) = Dy )y K, )= (K K )]



Statistical Model for DPA ([CHES 2012))

- Power consumption leakage model with additive

Gaussiannoises: | — oy 4+ Cc+ ofr m=1 N
m m m — 1. ° )

- |, (leakage), v,, = w(X.,, k) is the select function, and r_, is the
random noise, following a Gaussian distribution N(O, 1)
- Signal-to-noise ratio of the side channel: SNR o6 =¢/o

- For DPA model, the distance of means (DoM) attack

SR = ¢Nk—1 (\/;2_1/2,”)

where u and ) are expressed by SNR and confusion
coefficients.



Extension to CPA

| =¢v, +C+oT, m=1,---,n

- V., IS Hamming distance/weight of multiple bits.
- Two-way confusion coefficient:
i =k(k K )=E[(V[k-V]k )]
- Three-way confusion coefficient:
Kk =K(K, k., k) =E[V [k, =V k) [k, =V k)]
£ =& (ky ki k) = E[(V [k, =V k) [k, =V KV Tk —E(V k)]
- Confusion lemma still holds for:

R(Ky k) =5 [y k) Ky, ) = (K K )



N
Success Rates for 1st Order CPA

- Under the CPA model:
1, ¢ ZRY: 1l ey T
= (= 2=(—)K+—(—)(K*—kr
u 2(O_)lc (G) 4(0)( )

- k is called the “confusion vector”, consisting of N,-1 two-way
confusion coefficients i(k,k,)

- K and K* are “confusion matrices”, (N,-1)x(N,-1), consisting of three-
way confusion coefficients  &(k_, k, . K, ) and x*(k, Ky oKy )

- The success rate of the CPA (unmasked):

SR =@y, ({Vn o= [K+ (o (K™~ )] )

- http://eprint.iacr.org/ Report 2014/152



Experimental Results for DES

- Confusion matrix K of DPA on the first bit of the first SBox
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R
Results for DES (I1)

- Confusion matrix K of CPA on the first DES SBox
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.
DPAvs. CPA

- DPA Is a special case of CPA
- Under DPA model, K =K*

- When the SNR is small, all the success rate (for ML
attack, DPA, and CPA) become:

SR=d, {+Vn--K2x}
‘ 20



2Nnd Order CPA on Masked Devices

- Using two leakage times points: one leaks
mask M and the other leaks Z(x, k)®M.

- Time point L;: L(t,) = Ly = &V, + ¢, + o1,

-Time point &: L(t) =L, =gV, +c +o,L
with V, = HW (M) andV, = HW (Z @ M),

- 2nd Order CPA: maximum correlation
between the centered product of L(t,)L(t,)
and HW(2).




Success Rates (SR) for 2" Order CPA

- Under the Hamming Weight/Distance model:
n = %50251216

X=0.0, (1+%502)(1+%512)K +%5§514(2K*—2K —KK')

- K , K and K* are exactly the same as in the
unmasked case.

- The formula does not assume Gaussian noise.

- Including second term, SR formula fits simulated
SR for moderate SNR=1



Success Rates for 29 Order Attack
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Use SR formula for 2"? Order CPA

- Quantify masking effect explicitly (small SNR):
02" Order CPA (leading term, for small SNR):

SR =, _1{\/_5 1

oVersus unmasked CPA: SR =@y, 1{\/_ 0 Kk}

- Masking increasing required sample S|ze by
(2/5)?

- Faster evaluation: find SNR 0 then plug-in.

- In next slide, find SNR from 10,000 traces,
compare SR to empirical SR from 1.4M traces

K uzK}



Success Rates for 29 Order Attack
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Higher Order CPA Success Rate

. J masks, process z jci;lmj
- J+1 order attack, at time points t,
1=01..J |leaks VO=VO(Z§_>1M,-) and
V,=V,(M)),....V, =V, (M,)

- Success Rate:

. VITTZ00) = 1o,
SR =0y, 1(vaX™V2p) =y, QJL K=12R).




Success Rates for 3rd Order Attack
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2"d Order Maximum Likelihood ML-Attack

- The ML-attack statistic T:

Eilog f(lik,)

= —Z |Og[ Z fo (Ii,o | kg , m) fl(li,l | m)]
i=1 |%|m€%

- The likelihood iterates over all possible mask values in7#

- The iteration is of order| 7 |, and would increase
exponentially with the order of masks.

- For Gaussian noises, this is a mixture Gaussian density.



2Nnd Order Attack Model

L, = &,V, +C, + O, L =&V, +C +0o,I;

l, =(Lo —C)) /oy =N, +T, | =6V, +r,

-When SNRs 6, —» 0, o6, = 0, the ML-attack
statistic T has key-independent limit

— Z |Og[ Z fr (Ii*O _ 50\/() (kg , m)) 1:r (Ii*l - 51V1(m))]
4 me 7 | ’

- — ZlOQ[f( o) T (5]



2nd Order Attack Approximation

- When SNRs 0, > 0,0, — 0 | do a Taylor
. e 1 .
expansion withinthe E, =—— »  operation,
and on the log|[.] | 7 | me %
- The first term after E_ operation is key
Independent. The key selection happens on the

second term, which is equivalent to the centered
product combination attack (20 CPA) statistic

=Y [0~ EL )~ El gz Wit

9(Z7?) = E, [V, (ky, mV, (M), for Hamming Weights
model, g(Z°?) o« H(Z?)



For Higher Order Masking

- The centered product combination attack Is
the strongest possible attack for noisy
(small SNRs) situation, Gaussian noise.

- Generally, the key selection happens on
the second term of Taylor expansion: can
find efficient attack asymptotic equivalent to
ML-attack. (J+1)th for J order masking.

- Valid Taylor Approximation when the noise
density has continuous third derivative.
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