

CHES 2014, 2014/Sep./24

Reversing Stealthy Dopant-Level Circuits

Takeshi Sugawara*

joint work with
Daisuke Suzuki*, Ryoichi Fujii*, Shigeaki Tawa*,
Ryohei Hori**, Mitsuru Shiozaki**, and Takeshi Fujino**

*Mitsubishi Electric Corp. and **Ritsumeikan Univ.

The study was conducted as a part of the CREST Dependable VLSI Systems Project funded by the Japan Science and Technology Agency

Quick overview

Stealthy dopant-level circuits are visible contrary to an assumption

A SEM image of the test chip at the contact layer: brightness differences between the dots mean the stealthy circuits are detectable

Duality: trojan detection and anti reverse engineering

A game between Hider and Seeker

A chip is made ...

- In trojan detection,
 - Treasure = trojan, Hider = attacker, Seeker = chip vendor
- In anti reverse engineering,
 - Treasure = proprietary circuit, Hider = circuit designer,
 Seeker = reverse engineer
- The dopant-level circuits make Hider advantageous

Stealthy Dopant-Level Circuits

- Undetectable circuits made by changing dopant types only
- Assumption: types of dopants are indistinguishable with visual inspection
 - Pro: the dopants are sparse; one dopant atom in $2^{42.185}$ silicon atoms
 - Correctness of the assumption was remained open

Cross section of MOS transistors

Difficult to distinguish n+ and p+

Dopant-level trojan by Becker et al. (CHES2013)

- A permanent fault is made by modifying dopants
 - A malicious fab may make such a modification at mask level
 - Various trojans can be made using the technique

DPD: Dopant-Programmable Device by Shiozaki et al.

- Anti reverse engineering technique based on the same principle
 - Dopant-programmable ROM is made using the permanent faults
 - A 2-bit look-up table is made using the dopant-programmable ROM
 - Finding the LUT's functionality is as difficult as finding the trojan

Layout design of DPD cell

- The 2-bit LUT is made into a standard cell
- The configuration is determined when the active layer is designed
 - No reconfiguration after fabrication

Layout design of the DPD standard cell

Dopant-programmable ROMs = Programming regions

A challenge to Seeker

- Seeker wants to recover the functionality of the LUT
- Seeker needs to recover the contents of the dopant-programmable ROMs
 - There are four dopant-well combinations: $\{n+, p+\} \times \{n-well, p-well\}$
 - Distinguishing a combination means recovering a ROM content

SEM: Scanning Electron Microscopy

- Measurement principle
 - Inject accelerated primary electrons to a device under test (DUT)
 - As a reaction, secondary electrons come out from DUT
 - The number of the secondary electrons is counted. That is converted to the brightness of a pixel
 - An image is made by scanning the position of the injection

PVC: Passive Voltage Contrast*

- We can measure a surface voltage of DUT with SEM
- When DUT is positively charged, some of the secondary electrons are attracted back to the sample
 - Less is measured at the detector
 - The region with higher surface voltage look darker in a SEM image

* R. Rosenkranz, "Failure Localization with Active and Passive Voltage Contrast in FIB and SEM", Journal of Materials Science: Materials in Electronics, Vol. 22, Issue 10, pp. 1523–1535, October 2011.

PVC: Passive Voltage Contrast cont.

- Actually, the DUT surface is charged by the primary electrons
- In a certain acceleration voltage, we observe #primary < #secondary
 - Consequently, DUT is positively charged (electron starving)
 - At the same time, electrons are supplied from outside
 - The final surface voltage is high if there is a poor supply
 - The final surface voltage is low if there is a rich supply

Dopant-well combinations should look differently

- The size of the conductive region determines the capacity to provide charges
- That is determined by the dopant-well combination
 - The diodes made by PN junctions limit the current paths

Dopant-well combinations should look differently cont.

- The size of the conductive region determines the capacity to provide charges
- That is determined by the dopant-well combination
 - The diodes made by PN junctions limit the current paths

Large conductive region

- = rich charge supply
- = low surface voltage
- = brighter pixel

Small conductive region

- = poor charge supply
- = high surface voltage
- = darker pixel

Measuring a target chip

- A chip containing an array of DPD cells
 - Rohm 180-nm CMOS process
 - Contact layer is exposed with mechanical polishing
 - 10 different LUT configurations× 10 each

A magnified view of the array

Comparing measurements

Stealthy dopant-level circuits are measurable

p+/n-well n+/n-well

(1) Layout

(2) Optical microscope x100

Hardly distinguishable

(3) SEM x8.0k

Brightness differences on the contacts

(4) FIB x12.0k

15

p+/n-well

n+/n-well

Measuring different DPD cells with SEM

An additional cost to analyze the dopant-level circuits

- Measurement of one additional layer (the contact layer)
 - Currently, that is as expensive as the M1 layer
 - If we want to distinguish all the four cases, we need 4-times higher magnification
 - The number of images can increase up to x16

Magnification	p+/p-well	p+/n-well	n+/p-well	n+/n-well
x100, x400				
x1.5k	Black	White	Black	Black
x6.0k x30.0k	White	Dark grey	Black	Light grey

SEM, 0.7kV, Slow, x400

SEM, 0.7kV, Slow, x1.5k

An extra: how many gates in a single photo?

Relationship between the gate counts and the number of images is estimated

Conclusion & open problem

- The conventional assumption of the stealthy dopant-level circuits is too optimistic
 - A good news for detecting trojans, a bad news for anti reverse engineering
- An open question: can we satisfy the conflicting goals?
 - We want Hider to win in anti reverse engineering
 - We want Seeker to win in trojan detection

A chip is made ...

Thank you!