“Ooh Aah... Just a Little Bit”: A small
amount of side channel can go a long way

Outline

e Background

e ECDSA
* WNAF scalar multiplication
e Hidden Number Problem

 The FLUSH+RELOAD Technique
e Attacking OpenSSL ECDSA

ECDSA

Signer has a private key 1<a<g-1 and a public key
Q=[a]G

1. Compute h=Hash(m)

2. Randomly select an ephemeral key 1<k<q
3. Compute (X,y)=[K]G

4. Take r=x mod q; If r=0 repeat from 2

5

6

. Take s=(h+r-a)/k mod q; if s=0 repeat from 2
. (r,S) is the signature

Note that k:(r/S)><a+(h/S) mod g

WNAF Form

To compute [d]G, first write d in wNAF form:

n-1
d=ad2 ford 1 {0,+1+3..,+(2" - 1)}
i=0

Such that if d#0 then d;,,=...=d,,,+,=0.

Scalar Multiplication with wNAF form
Precompute {£G, £[3]G,..., £[2"-1]G}

Xx=0

for 1=n-1 downto O
X = Double(x)
If (d:£0) then

X = Add(x, [d]G)

end

end

return x

The Hidden Number Problem

Suppose we know numbers t;, U; such that
at, -), <ql2

The Hidden Number Problem

Suppose we know numbers t;, U; such that

at, -), <ql2Z
We can construct a lattice
3 - C
¢ 20 ;
: :
c s
27 o 2%, 1

And a vector

(244,00, 27 50,,0)
Which is very close to a lattice vector that depends
on a.

HNP and ECDSA

Recall that k:(r/s)>§a+(hls) mod g
We want \atl.- ul.‘q <qgl2°

In terms of k:

o

n 0

Or in terms of t: and u;:

‘(r/s)>%’:2+(h/s)‘ =k

q

HNP and ECDSA

Recall that k:(rls)m+(h/s) mod g
We want ‘atl.- ul.‘q <qgl2°

In terms of K:
k — a
n 0

Or in terms of t: and u;:

‘(r/s)xa- (- (h/s))‘ <q

q

HNP and ECDSA

Recall that k:(rls)m+(h/s) mod g
We want ‘atl.- ul.‘q <qgl2°

In terms of k:

k-a o

Or in terms of t: and u;:

‘(r/s)m- (a- (h/s))‘ <q

q

0

HNP and ECDSA

Recall that k:(rls)m+(h/s) mod g
We want ‘atl.- ul.‘q <qgl2°

In terms of k:
(k- a)l2]

n-I 0

Or in terms of t: and u;:

‘((r/s)xa- (a- (h/S)))/Zl

<ql?2
q

In terms of
‘(k- a- q/2)/21

HNP and ECDSA

Recall that k:(rls)m+(hls) mod g
We want ‘atl.- ul.‘q <qgl2°

K.

<q/21+1
q

n-(1+1) 0

Or in terms of t: and u;:

((r1s)%a- (a- (h1s5)+q12))/2

<q/21+1
q

The X86 Cache

e Memory is slower than the
Processor

processor
* The cache utilises locality u u E

to bridge the gap

— Divides memory into lines
Cache
— Stores recently used lines

* Shared caches improve
performance for multi-core

Processors B

Memory

Cache Consistency

e Memory and cache can be
In Inconsistent states

— Rare, but possible
e Solution: Flushing the
cache contents

— Ensures that the next load is
served from the memory

Processor

Memory
14

The FLUSH+RELOAD Technique

* Exploits cache behaviour to leak information
on victim access to shared memory.

— Shared text segments
— Shared libraries
— Memory de-duplication
* Spy monitors victim’s access to shared code

— Spy can determine what victim does
— Spy can infer the data the victim operates on

FLUSH+RELOAD

Processor

FLUSH memory line
Wait a bit

Measure time to RELOAD
line

—slow-> no access
—fast-> access

Repeat

Memory
16

Attacking OpenSSL wNAF

Achieve sharing of the victim code

Use FLUSH+RELOAD to recover the double and
add chain of the wNAF calculation

Divide time into slots of 1200 cycles (about
0.4us)

In each slot, probe a memory line in the code
of the Double and Add functions.

Sample Trace

Raw:

DI [|IDID||ID||||A[I]IDI]ID||IID||ID|||A|A]|]|D|]|ID]|]]|
DI [DI [|IDI|IDI|IA[||ID||ID|D||IDI|IDI||ID||A[A]|]|D
|1 IDID| [IDIIDII|AII]IDI|IDI|IDI|IDI|IDI||AIA||]]|D]]
IDI | |DI||ID||AIA]||ID|||ID||ID||ID|||A|||D|||D|||D|D]
| IDI|ID|||A]||ID||ID||ID||ID|D|||D|||D||ID|||A|]||D|D
|| ID] |..

Processed:

DDDADDDDADDDDDDADDDDDADDDDADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDADDDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDDADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDg;zDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADD DADDDDDDADDDDADD

Using the LSBs

The trace: pppADDDDADDDDD...DDDDDDADDDDADD

Reveals 3 LSBs (100). A different trace might
reveal fewer bits. How do we deal with that?

e - C
¢ 2 :
g)
¢ Y
g 2°%, 2%, 1,

(27,0, 27 %, 0)

Using the LSBs

The trace: pppADDDDADDDDD...DDDDDDADDDDADD

Reveals 3 LSBs (100). A different trace might
reveal fewer bits. How do we deal with that?

DO O O O O 8
N

N
<&

N e

N
X
N
!
%
U
=

(2% %, , 2 >0,,0)
We vary the z per (t;, U;) tuple.

Results

* Previous: Liu and Nguyen 2013 — 160 bit key,
100 signatures, 2 known bits

Results

* Previous: Liu and Nguyen 2013 — 160 bit key,
100 signatures, 2 known bits

e Our results: against secp256k1

Expected Success Time /
Sigs d Time (s) Prob. Prob.
200 100 611.13 .035 17460
220 110 79.67 .020 3933
240 60 2.68 .005 536
260 65 2.26 .055 41
280 70 4.46 295 15
300 75 13.54 .530 26

Summary

e FLUSH+RELOAD extracts the double-and-add
chains with almost no errors

e We can use a variable number of bits in the
lattice attack

 We can break a 256 bit key by obtaining less
than 256 signatures.

