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EM attack using microprobe

B Observe precise information leakage from a
specific part of LS| by micro scale probing

O performed on the surface of LSIs beyond conventional
security assumptions (e.g., power/EM models)

Charge and discharge
transitions on bus were
distinguishable
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Many microprobe-based EM attacks have been
reported until now



Measurable leaks inside ASIC by microprobe

B Current-path leaks

O In standard cell

O Defeat gate-level countermeasures
B Internal-gate leaks (of XOR)

O In standard cell

O Defeat XOR-based countermeasures
B Geometric leaks

O In memory macro
O Defeat ROM-based countermeasures
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Most of conventional countermeasures can be defeated if

the above leaks are measured by attackers

O Such threat would be more and more serious according to the
advancement of measurement devices and techniques



Possible existing countermeasures

B Performance overhead and manufacturing cost of
possible existing countermeasures are non-trivial

Atmel ATSHA204

Transistor-level Active shielding Special packaging
balancing (or hiding) on or around LSI

This work: slightly-analog yet reactive countermeasure

that can sense microprobe-based EM attacks
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Our idea

EM Probe
Electrical
coupling o
(Variation M
iIn EM field)
1
LSI James Clerk Maxwell

Physical law unavoidable in EM measurement

Sense EM attacks by observing EM field variation



ldea of sensor implementation

B Sense electrical coupling (EM field variation)
O Robust to various attack scenarios

O Low implementation and performance overhead

Our implementation idea
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Detect the presence of a probe by
LC oscillation frequency shift .



Dual-coll sensor architecture

Lo ﬂ

Dual sensor coils

Freguency shift )

Attack
detection by
difference

fLC1

1:LC2

Sensor-to-probe vertical distance

B No frequency reference needed
B Detect various probing scenarios by different coil shapes
B Calibrate PVT (Process, Voltage, and Temperature)

variation in f - digitally



Sensor core

B Connected to two sensor colls

B Consist of LC and ring oscillators, detection logic,
calibration logic, and control logic
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Oscillation
Frequency [Hz]

Calibration scheme
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fTarget : Target frequency after calibration

>

AC : Capacitance change for calibration (Decided by |fzo-f c|)
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Oscillation
Frequency [Hz]

Calibration scheme

A 1:RO

w/ Probe

fTarget

>f e

RO fc<f

fic

RO
>
Vb, vp

Supply Voltage Vg [V]

fTarget : Target frequency after calibration
AC : Capacitance change for calibration (Decided by |fzo-f c|)

(Ring Osc. Freq.)

(LC Osc. Freq.)

11



Intermittent sensor operation

W Save power and performance overheads
B No interference between crypto core and sensor
O Two circuits are activated exclusively

Crypto Core Operation
:)—( Crypto Op. )—( Crypto Op. )—( Post-Detect Op. )—C

Sensor Operation . Calibration Attack
ﬂ f+Sensing Detection

Time
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Design flow

Crypto Core
Sensor Core Design

Start
- v - Process
Coil Design Logic i)ESIgn Library
Netlist Gen. [€— Logic Synthesis | Block-Level
v v
Coil Design [€—1 Floor Planning Grouping & Partitioning
v v
Coil Layout > Placement LUT & Cap. Bank Pre-Placement
v
2-Layer coll style Route Wire Blockage around Coils
v LUT & Cap. Bank Programming
Verification
v
Finish

13



Sensor coll layout

B Two different metal layers for orthogonal edges
O0Coils embedded in sea of logic interconnections
O Save wire resources for logic circults
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Experimental setup

B 128bit-Key AES processor with EM attack sensor
fabricated in 0.18um Logic CMOS

B Experiments of typical and prospective attack scenarios
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Typical attack with single micro probe




Typical attack with single micro probe
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Attack with larger probe

Dual Sensor
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Changing PVT condition and presetting probe
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Overhead of sensor

Total
\ AES core Sensor (Sensor Overhead)
2NAND Gate 24.6k
Count 24.3k 0.3k (+1.2%)
Wire R 0.40mm? 0.05mm? 0.45
Ire Resource 40mm .05mm (+11%)
Layout A 0.48mm2 | 0.o01mmz | OA49mm*
ayout Area 48mm .01lmm (+296)
125.3us
Performance 125pus/Enc | 0.3us/Sense (-0.296)
Power 0.25mW
Consumption 0.23mW 0.02mwW (+9%)
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Discussion

B Proposed sensor is effective for various
probing attacks in addition to EM analysis
and EM fault injection attacks

B One possible attack may be to keep the difference of LC
oscillation frequencies during measurement
O Difficulty level is high since attacker cannot see oscillation freq.

B Detection distance between probe and sensor is at most
0.1 mm so far
O Conventional EMASs on chip package are still possible
O Combination of existing and proposed countermeasures is practical

21



Conclusion

B New reactive countermeasure “EM attack sensor”
O Sense EM field variation caused by probe approach
O Prevent microprobe-based EMAs performed on chip surface

B Design methodology and validity verification
O Standard-cell-based design methodology
O Showed low cost and performance overhead
O Demonstrated detection of typical and prospective attacks

B Future works
O Extension of maximum detection distance
O Effective combination with existing countermeasures
O Further validation based on other possible attack scenarios
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Thank you
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