Leakage Resilient Symmetric Encryption via Re-keying

Michel Abdalla1 Sonia Belaïd1,2 Pierre-Alain Fouque1,3

1École Normale Supérieure
2Thales Communications & Security
3Rennes University

August, 23rd 2013
Outline

1. Introduction
 - Side-Channel Attacks
 - Re-keying
 - Our Contributions

2. Leakage-Resilient Encryption Schemes
 - Leakage-Resilient Cryptography
 - Scheme 1: from a leakage-resilient PRF
 - Scheme 2: from a Weak PRF
 - Random Values Generation

3. Practical Analysis
 - Instantiation
 - Complexity Evaluation

4. Conclusion
Outline

1. Introduction
 - Side-Channel Attacks
 - Re-keying
 - Our Contributions

2. Leakage-Resilient Encryption Schemes
 - Leakage-Resilient Cryptography
 - Scheme 1: from a leakage-resilient PRF
 - Scheme 2: from a Weak PRF
 - Random Values Generation

3. Practical Analysis
 - Instantiation
 - Complexity Evaluation

4. Conclusion
Side-Channel Attacks

- physical leakage
 - timing
 - power consumption
 - electromagnetic radiations
 - ...

- statistical treatment

- key recovery
Countermeasures against Side-Channel Attacks

Masking

\[x \text{ replaced by } x_m = x \star m \]

Drawbacks of Masking

- higher-order attacks
- glitches

Re-keying

Countermeasures against Side-Channel Attacks
Two Main Re-keying Schemes

Parallel Scheme

Sequential Scheme
Two Main Re-keying Schemes

Parallel Scheme

Sequential Scheme

can be vulnerable to *Differential Power Analysis*.

Michel Abdalla, Sonia Belaïd, Pierre-Alain Fouque

Leakage Resilient Symmetric Encryption via Re-keying
Two Main Re-keying Schemes

Parallel Scheme

vulnerable to **Differential Power Analysis**

Sequential Scheme

efficiency issue in case of *synchronization*
Two Main Re-keying Schemes

Parallel Scheme

vulnerable to **Differential Power Analysis**

Sequential Scheme

efficiency issue in case of **synchronization**
Two Main Re-keying Schemes

Parallel Scheme

Sequential Scheme

vulnerable to *Differential Power Analysis*

efficiency issue in case of *synchronization*
Two Main Re-keying Schemes

- **Parallel Scheme**
 - Vulnerable to *Differential Power Analysis*

- **Sequential Scheme**
 - Efficiency issue in case of *synchronization*
Two Main Re-keying Schemes

Parallel Scheme

vulnerable to \textit{Differential Power Analysis}

Sequential Scheme

efficiency issue in case of \textit{synchronization}
Two Main Re-keying Schemes

Parallel Scheme

Sequential Scheme

vulnerable to Differential Power Analysis

efficiency issue in case of synchronization
Two Main Re-keying Schemes

Parallel Scheme

vulnerable to *Differential Power Analysis*

Sequential Scheme

efficiency issue in case of *synchronization*
Existing Work

Kocher’s Patent:
Leak-Resistant Cryptographic Indexed Key Update, 1999.

- ✔ re-keying scheme
- ✔ solution to the synchronisation issue

but
- ✗ no proof given
- ✗ two keys used multiple times with different inputs
Our Contributions

- re-keying scheme (different from Kocher’s)
- solution to the synchronisation issue

but also

- limited use of each secret key
- proof of leakage-resilience for the whole encryption scheme
Outline

1 Introduction
 - Side-Channel Attacks
 - Re-keying
 - Our Contributions

2 Leakage-Resilient Encryption Schemes
 - Leakage-Resilient Cryptography
 - Scheme 1: from a leakage-resilient PRF
 - Scheme 2: from a Weak PRF
 - Random Values Generation

3 Practical Analysis
 - Instantiation
 - Complexity Evaluation

4 Conclusion
Leakage-Resilient Cryptography

Leakage-Resilient Cryptography Model
- only computation leaks
- bounded amount of leakage per invocation
- unlimited number of invocations

Leakage-Resilient Encryption Scheme
- challenge and leakage oracles
- ciphertext indistinguishable from the encryption of a random string of the plaintext’s size
Scheme 1: Symmetric Encryption from a LR PRF

- Re-keying Primitive
 - leakage-resilient PRF
 - non-adaptive leakage functions
 - non-adaptive inputs

- Block Cipher
 - as a PRF
 - not leakage-resilient

Theorem 1: This encryption scheme is a non-adaptive leakage-resilient encryption scheme.
Scheme 1 instantiated with the CHES’12 PRF (1/2)

- instantiated with the Faust-Pietrzak-Schipper naLR naPRF
 S. Faust, K. Pietrzak, J. Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES’12
- inspired by the Goldreich-Goldwasser-Micali tree
Scheme 1 instantiated with the CHES’12 PRF (1/2)

Scheme 1: from a leakage-resilient PRF

Example: \(\text{PRF}_k(101) \)
Scheme 1 instantiated with the CHES’12 PRF (1/2)

Example: \(\text{PRF}_{k}(101) \)
\[k_1 = F(k,q_0) \]
Scheme 1 instantiated with the CHES’12 PRF (1/2)

Example: \[\text{PRF}_k(101) \]
\[k_1 = F(k,q_0) \]
\[k_{10} = F(k_1,p_1) \]
Scheme 1 instantiated with the CHES’12 PRF (1/2)

Example: $\text{PRF}_k(101)$

\[
\begin{align*}
 k_1 &= F(k, q_0) \\
 k_{10} &= F(k_1, p_1) \\
 k_{101} &= F(k_{10}, q_2)
\end{align*}
\]
Scheme 1 instantiated with the CHES’12 PRF (1/2)

Example: $\text{PRF}_k(101)$
- $k_1 = F(k, q_0)$
- $k_{10} = F(k_1, p_1)$
- $k_{101} = F(k_{10}, q_2)$
- $k^* = F(k_{101}, p_3)$
Scheme 1 instantiated with the CHES’12 PRF (2/2)

LR Encryption Scheme from

✔ naLR naPRF as re-keying scheme
✔ a SPA resistant block cipher

but

✖ not optimal
✖ no solution for the re-synchronization
Scheme 2: Symmetric Encryption from a Weak PRF

LR Encryption Scheme from

- only weak PRFs for the re-keying
- a SPA resistant block cipher
- more efficient
- with a solution for the re-synchronization

but

× additional constraint on the message
Security Aspects

- block cipher with **random inputs**
- **same primitive** for the block cipher and the weak PRFs
- plaintext **before** or **after** the block cipher
Synchronization Issue: Order?

Now we have a re-keying scheme, how to determine the keys order for the synchronization?
Synchronization Issue: Order?

Now we have a re-keying scheme, how to determine the keys order for the synchronization?

✔️ short-cuts
Synchronization Issue: Order?

Now we have a re-keying scheme, how to determine the keys order for the synchronization?

✔ short-cuts

✗ no additional relation between keys
Synchronization Solution: Skip-lists

Solution: **Skip-lists**
Synchronization Solution: Skip-lists

Example: Reach key K_{24} from K_1
Synchronization Solution: Skip-lists

Example: Reach key K_{24} from K_1
Synchronization Solution: Skip-lists

Example: Reach key K_{24} from K_1
Synchronization Solution: Skip-lists

Example: Reach key K_{24} from K_1
Synchronization Solution: Skip-lists

Example: Reach key K_{24} from K_1
Introduction

Leakage-Resilient Encryption Schemes

Practical Analysis

Conclusion

Leakage-Resilient Cryptography

Scheme 1: from a leakage-resilient PRF

Scheme 2: from a Weak PRF

Random Values Generation

Synchronization Solution: Skip-lists

Example: Reach key K_{24} from $K_1 \Rightarrow 5$ derivations *instead of* 23 in the sequential scheme!
First possibility: one fresh random value per derivation

fresh random values ≈ # nodes
Second possibility [FPS12]: one fresh random value per tree layer

\[\# \text{fresh random values} \approx \text{tree depth} \]
Third Proposition from [YS13]

Third possibility [YS13] random values generated by a PRG
▶ # fresh random values = 1 (seed)
Outline

1. Introduction
 - Side-Channel Attacks
 - Re-keying
 - Our Contributions

2. Leakage-Resilient Encryption Schemes
 - Leakage-Resilient Cryptography
 - Scheme 1: from a leakage-resilient PRF
 - Scheme 2: from a Weak PRF
 - Random Values Generation

3. Practical Analysis
 - Instantiation
 - Complexity Evaluation

4. Conclusion
Instantiation

- weak PRF for the derivation:
Instantiation

- weak PRF for the derivation: AES ✔
Instantiation

- weak PRF for the derivation: AES
- block cipher:
Instantiation

- weak PRF for the derivation: AES
- block cipher: AES
Instantiation

- weak PRF for the derivation: AES
- block cipher: AES
- PRG:

SPA-resistant AES

Michel Abdalla, Sonia Belaïd, Pierre-Alain Fouque
Instantiation

- weak PRF for the derivation: AES ✓
- block cipher: AES ✓
- PRG: AES ✓
Instantiation

- weak PRF for the derivation: AES
- block cipher: AES
- PRG: AES

Only one primitive for the whole encryption scheme:

SPA-resistant AES
Complexity Evaluation

Table: Number of key derivations N

<table>
<thead>
<tr>
<th></th>
<th>K_{10}</th>
<th>K_{10^2}</th>
<th>K_{10^3}</th>
<th>K_{10^4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#stages = 2, #children = 2</td>
<td>4</td>
<td>34</td>
<td>$3.3 \cdot 10^2$</td>
<td>$3.3 \cdot 10^3$</td>
</tr>
<tr>
<td>#stages = 5, #children = 5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>sequential scheme</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
</tr>
</tbody>
</table>
Complexity Evaluation

Table: Number of key derivations N

<table>
<thead>
<tr>
<th></th>
<th>K_{10}</th>
<th>K_{10^2}</th>
<th>K_{10^3}</th>
<th>K_{10^4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#stages = 2, #children = 2</td>
<td>4</td>
<td>34</td>
<td>$3.3 \cdot 10^2$</td>
<td>$3.3 \cdot 10^3$</td>
</tr>
<tr>
<td>#stages = 5, #children = 5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>sequential scheme</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
</tr>
</tbody>
</table>
Complexity Evaluation

Table: Number of key derivations N

<table>
<thead>
<tr>
<th>K_{10}</th>
<th>K_{10^2}</th>
<th>K_{10^3}</th>
<th>K_{10^4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#stages = 2, #children = 2</td>
<td>4</td>
<td>34</td>
<td>$3.3 \cdot 10^2$</td>
</tr>
<tr>
<td>#stages = 5, #children = 5</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>sequential scheme</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
</tr>
</tbody>
</table>

$$C = \left(\#derivations + \#block\; encryptions + \#random\; values \right) \tau_{AES}$$

$$= \left(N_k + N_m - 1 + N_m + \frac{N_k + 2N_m - 1}{\left\lceil n/\log(1/\epsilon) \right\rceil} \right) \tau_{AES}$$
Outline

1 Introduction
 - Side-Channel Attacks
 - Re-keying
 - Our Contributions

2 Leakage-Resilient Encryption Schemes
 - Leakage-Resilient Cryptography
 - Scheme 1: from a leakage-resilient PRF
 - Scheme 2: from a Weak PRF
 - Random Values Generation

3 Practical Analysis
 - Instantiation
 - Complexity Evaluation

4 Conclusion
Conclusion

Summary
- **leakage-resilient** symmetric encryption
- **efficient** symmetric encryption
- re-keying scheme **without** PRF

Further Work
- **more efficient** encryption schemes
- leakage-resilient encryption using **modes of operation**
Thank you