Analysis and Improvement of the Generic Higher Order Masking Scheme of FSE 2012

Arnab Roy and Srinivas Vivek

August 23, 2013

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

Introduction Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

Higher-Order Masking

- Counter measure against side-channel attacks
- Complexity of the attack increases exponentially with the masking order
- Secret variable is split into d + 1 variables

$$x = x_0 + x_1 + .. + x_d$$

Affine functions are easy to mask:

$$\mathcal{A}(x_0) + \mathcal{A}(x_1) + \ldots + \mathcal{A}(x_d) = \mathcal{A}(x)$$

For a non-linear function: $y = \mathcal{G}(x)$

$$(y_0,\ldots,y_d) \leftarrow \mathcal{G}(x_0,\ldots,x_d)$$

Masking S-box and Polynomial evaluation

- A generic method proposed by Carlet-Goubin-Prouff-Quisquater-Rivain in FSE'12, for any order and any S-box
- S-box $S(x) = \sum_{i=0}^{2^n-1} A_i x^i$ over \mathbb{F}_{2^n} , where $A_i \in \mathbb{F}_{2^n}$
- Shares for S(b) are obtained by evaluating the polynomial with b_i
- Masking of S-box is achieved by masking non-linear multiplications using ISW [Ishai-Sahai-Wagner CRYPTO'03] scheme
- Two methods for efficient evaluation of polynomials: Cyclotomic class, Parity Split [CGPQR12]

Relation to Addition Chain

• Example: In \mathbb{F}_{2^4} , x^{14} (= $x^8 \cdot x^4 \cdot x^2$)

Relation to Addition Chain

- Example: In \mathbb{F}_{2^4} , x^{14} (= $x^8 \cdot x^4 \cdot x^2$)
- A structured way: (Cyclotomic Class) [CGPQR12]

$$C(\alpha) = \{ \alpha \cdot 2^i \mod (2^n - 1) : i = 0, 1, .., n - 1 \}$$

κ	Cyclotomic classes
0	$C_0 = \{0\}, \ C_1 = \{1, 2, 4, 8\}$
1	$C_3 = \{3, 6, 12, 9\}, C_5 = \{5, 10\}$
2	$C_7 = \{7, 14, 13, 11\}$

Relation to Addition Chain

- Example: In \mathbb{F}_{2^4} , x^{14} (= $x^8 \cdot x^4 \cdot x^2$)
- A structured way: (Cyclotomic Class) [CGPQR12]

$$C(\alpha) = \{ \alpha \cdot 2^i \mod (2^n - 1) : i = 0, 1, .., n - 1 \}$$

$$\begin{tabular}{|c|c|c|c|c|} \hline κ & Cyclotomic classes \\ \hline 0 & $C_0 = \{0\}, $C_1 = \{1, 2, 4, 8\}$ \\ \hline 1 & $C_3 = \{3, 6, 12, 9\}, $C_5 = \{5, 10\}$ \\ \hline 2 & $C_7 = \{7, 14, 13, 11\}$ \\ \hline \end{tabular}$$

- 14 has chains {8,4,2} and {8,6}
- Shortest Cyclotomic Class-addition chain is optimal for x^α

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

Introduction Background and Previous work

Our Analysis Analysis of CC-Addition Chain Formalization of Masking Complexity

New Bounds

Improved Method

- For a fixed 𝔽_{2ⁿ}, m_n(α) denotes the length of a shortest CC-addition chain
- (Lower Bound) $m_n(\alpha) \ge \log_2(\nu(\alpha))$
- We use this later to give new bounds on Masking Complexity
- "For fixed n, x^{2ⁿ-2} has maximum m_n(α)" [CGPQR'12] NOT TRUE

Analysis (contd.)

Monotonicity of m_n(α) w.r.t. n : Can we gain in a subfield (𝔽_ℓ ⊂ 𝔽_{2ⁿ}) or in a super field (𝔽_ℓ ⊃ 𝔽_{2ⁿ}) ?

Analysis (contd.)

- Monotonicity of m_n(α) w.r.t. n : Can we gain in a subfield (𝔽_ℓ ⊂ 𝔽_{2ⁿ}) or in a super field (𝔽_ℓ ⊃ 𝔽_{2ⁿ}) ?
- In general, m_n(α) may increase or decrease with the change of field 𝔽_{2ⁿ}.
- ► Example: $m_5(23) = 2$, $m_6(23) = 3$. Also $m_7(83) = 3$, $m_7(83) = 2$

Analysis (contd.)

- Monotonicity of m_n(α) w.r.t. n : Can we gain in a subfield (𝔽_ℓ ⊂ 𝔽_{2ⁿ}) or in a super field (𝔽_ℓ ⊃ 𝔽_{2ⁿ}) ?
- In general, m_n(α) may increase or decrease with the change of field 𝔽_{2ⁿ}.
- ► Example: $m_5(23) = 2$, $m_6(23) = 3$. Also $m_7(83) = 3$, $m_7(83) = 2$
- However, it may be useful to work in a subfield

Proposition

If n|q and $\lceil \log_2(\alpha + 2) \rceil \le n \le q$, then $m_n(\alpha) \le m_q(\alpha)$.

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity

New Bounds

Improved Method

Non-linear (Masking) Complexity

Definition

A \mathbb{F}_{2^n} - **polynomial chain** S, for a polynomial $P(x) \in \mathbb{F}_{2^n}[x]$ is defined as

$$\lambda_{-1} = 1, \ \lambda_1 = x, \ \ldots, \ \lambda_r = P(x)$$

where

$$\lambda_{j} = \begin{cases} \lambda_{j} + \lambda_{k} & -1 \leq j, k < i, \\ \lambda_{j} \cdot \lambda_{k} & -1 \leq j, k < i, \\ \alpha_{i} \odot \lambda_{j} & -1 \leq j < i, \alpha_{i} \text{ is a scalar,} \\ \lambda_{j}^{2} & -1 \leq j < i. \end{cases}$$

The **minimum** number of *non-linear* multiplications over all such chains S is the *non-linear* complexity, denoted as $\mathcal{M}(P(x))$

► Let Q be the polynomial for a given S-box, then M(Q(x)) is the masking complexity (MC).

Is the above formalization of masking complexity well-defined ? YES

Theorem

Masking complexity of an S-box is invariant w.r.t. to field representation

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

- The notion of $\mathbb{F}_{2^{n-}}$ polynomial chain is more general
- Can be reduced to the notion of CC-addition chain when given polynomial is power function

•
$$P(x) := \sum_{i=0}^{2^n-1} a_i x^i$$
, then $\mathcal{M}(P(x)) \ge \max_{\substack{0 < i < 2^n-1 \\ a_i \neq 0}} m_n(i)$.

MC of DES is at least 3 and MC of PRESENT is at least 2.

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

A General Description

DES S-box Masking Method Other S-boxes

Polynomial evaluation: A general strategy

Polynomial evaluation: A general strategy

Polynomial evaluation: A general strategy

Non-linear multiplications

- $P(x) = (x^{kt} + Q_1(x)) \cdot Q(x) + x^{k(t-1)} + R_1(x)$
- Apply this technique to Q and $x^{k(t-1)} + R$ recursively
- ► Assume t = 2ⁱ⁻¹, then after evaluating x², x³,..., x^k, we can evaluate (x^k)^t easily
- Number of nonlinear multiplications:

$$\mathcal{T}(k(2^{i}-1)) = 2\mathcal{T}(k(2^{i-1}-1)) + 1$$

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

 $P_{DES}(x) = (x^{36} + Q_1(x)) \cdot Q(x) + x^{27} + R_1(x)$

Number of Non-linear multiplications for DES

Applying this recursively to R₁ and Q

$$P_{DES} = (x^{36} + Q_1(x)) \cdot \left(\left((x^{18} + r_1(x)) \cdot q_1(x) \right) + (x^9 + s_1(x)) \right) \\ + \left((x^{18} + r_2(x)) \cdot q_2(x) + (x^9 + s_2(x)) \right)$$

Number of Non-linear multiplications for DES

Applying this recursively to R₁ and Q

$$P_{DES} = (x^{36} + Q_1(x)) \cdot \left(((x^{18} + r_1(x)) \cdot q_1(x)) + (x^9 + s_1(x)) \right) \\ + \left((x^{18} + r_2(x)) \cdot q_2(x) + (x^9 + s_2(x)) \right)$$

Number of non-linear multiplications: 4 (computing x, x²,..., x⁹) + 3 = 7

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

A General Description DES S-box

Masking Method

Other S-boxes

Masking Method

- Express the polynomial S(x) = ∑_{i=0}^{2ⁿ-1} a_i xⁱ as function of polynomials of degree ≤ k and (x^k)^{2ⁱ}
- Evaluate x, x²,..., x^k with the d + 1 shares by masking the non-linear multiplications
- Combine the polynomials by masking any non-linear multiplications involved

Introduction

Background and Previous work

Our Analysis

Analysis of CC-Addition Chain Formalization of Masking Complexity New Bounds

Improved Method

We applied this technique to other S-boxes

	AES	CAMELLIA	CLEFIA	DES	PRESENT	SERPENT
Cyclotomic	4	33	33	11	3	3
Parity-Split	6	22	22	10	4	4
Our Result	4	15	16 (S ₀)/ 15 (S ₁)	7	3	3