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Higher-Order Masking

I Counter measure against side-channel attacks
I Complexity of the attack increases exponentially with the

masking order
I Secret variable is split into d + 1 variables

x = x0 + x1 + ..+ xd

I Affine functions are easy to mask:

A(x0) +A(x1) + . . .+A(xd) = A(x)

I For a non-linear function: y = G(x)

(y0, . . . , yd)← G(x0, . . . , xd)



Masking S-box and Polynomial evaluation

I A generic method proposed by
Carlet-Goubin-Prouff-Quisquater-Rivain in FSE’12, for any
order and any S-box

I S-box S(x) =
∑2n−1

i=0 Aix i over F2n , where Ai ∈ F2n

I Shares for S(b) are obtained by evaluating the polynomial
with bj

I Masking of S-box is achieved by masking non-linear
multiplications using ISW [Ishai-Sahai-Wagner
CRYPTO’03] scheme

I Two methods for efficient evaluation of polynomials:
Cyclotomic class, Parity Split [CGPQR12]



Relation to Addition Chain

I Example: In F24 , x14 (= x8 · x4 · x2)

I A structured way: (Cyclotomic Class) [CGPQR12]

C(α) = {α · 2i mod (2n − 1) : i = 0,1, ..,n − 1}

κ Cyclotomic classes
0 C0 = {0}, C1 = {1,2,4,8}
1 C3 = {3,6,12,9}, C5 = {5,10}
2 C7 = {7,14,13,11}

I 14 has chains {8,4,2} and {8,6}
I Shortest Cyclotomic Class-addition chain is optimal for xα
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Analysis of CC-Addition Chain

I For a fixed F2n , mn(α) denotes the length of a shortest
CC-addition chain

I (Lower Bound) mn(α) ≥ log2(ν(α))

I We use this later to give new bounds on Masking
Complexity

I “For fixed n, x2n−2 has maximum mn(α)” [CGPQR’12] NOT
TRUE



Analysis (contd.)

I Monotonicity of mn(α) w.r.t. n : Can we gain in a subfield
(F` ⊂ F2n ) or in a super field (F` ⊃ F2n ) ?

I In general, mn(α) may increase or decrease with the
change of field F2n .

I Example: m5(23) = 2, m6(23) = 3. Also m7(83) = 3,
m7(83) = 2

I However, it may be useful to work in a subfield

Proposition
If n|q and dlog2 (α+ 2)e ≤ n ≤ q, then mn(α) ≤ mq(α).
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Non-linear (Masking) Complexity

Definition
A F2n - polynomial chain S, for a polynomial P(x) ∈ F2n [x ] is
defined as

λ−1 = 1, λ1 = x , . . . , λr = P(x)

where

λi =


λj + λk −1 ≤ j , k < i ,
λj · λk −1 ≤ j , k < i ,
αi � λj −1 ≤ j < i , αi is a scalar,
λ2

j −1 ≤ j < i .

The minimum number of non-linear multiplications over all
such chains S is the non-linear complexity, denoted as
M(P(x))



Masking Complexity

I Let Q be the polynomial for a given S-box, thenM(Q(x))
is the masking complexity (MC).

I Is the above formalization of masking complexity
well-defined ? YES

Theorem
Masking complexity of an S-box is invariant w.r.t. to field
representation
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Relation to CC-addition chain

I The notion of F2n - polynomial chain is more general

I Can be reduced to the notion of CC-addition chain when
given polynomial is power function

I P(x) :=
∑2n−1

i=0 ai x i , thenM(P(x)) ≥ max
0<i<2n−1

ai 6=0

mn(i).

I MC of DES is at least 3 and MC of PRESENT is at least 2.
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Polynomial evaluation: A general strategy

P,d =
k(2t − 1)

Q,d =
k(t − 1)

divide by
x kt

R,
d ≤kt−1
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Polynomial evaluation: A general strategy

P,d =
k(2t − 1)

Q,d =
k(t − 1)

divide by
x kt

R−xk(t−1),
d ≤kt − 1

Q1, d ≤
k − 1

divide by
Q

R1, d ≤
k(t −1)−1



Non-linear multiplications

I P(x) = (xkt + Q1(x)) ·Q(x) + xk(t−1) + R1(x)

I Apply this technique to Q and xk(t−1) + R recursively

I Assume t = 2i−1, then after evaluating x2, x3, . . . , xk , we
can evaluate (xk )t easily

I Number of nonlinear multiplications:

T (k(2i − 1)) = 2T (k(2i−1 − 1)) + 1
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Example: DES

PDES,d = 62
9(2 · 22 − 1)

Q,d = 26

divide by
x 36

R,d ≤35

PDES,d = 62
9(2 · 22 − 1)

Q,d = 26
9(2 · 2− 1)

div by
x 36

R + x27

d ≤35

Q1, d ≤ 9

div by
Q

R1, d ≤ 25
9(2 · 2− 1)

PDES(x) = (x36 + Q1(x)) ·Q(x) + x27 + R1(x)
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Number of Non-linear multiplications for DES

I Applying this recursively to R1 and Q

PDES = (x36 + Q1(x)) ·
(
((x18 + r1(x)) · q1(x)) + (x9 + s1(x))

)
+
(
(x18 + r2(x)) · q2(x) + (x9 + s2(x))

)

I Number of non-linear multiplications: 4 (computing
x , x2, . . . , x9) + 3 = 7
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Masking Method

I Express the polynomial S(x) =
∑2n−1

i=0 ai x i as function of
polynomials of degree ≤ k and (xk )2i

I Evaluate x , x2, . . . , xk with the d + 1 shares by masking the
non-linear multiplications

I Combine the polynomials by masking any non-linear
multiplications involved
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Comparison

I We applied this technique to other S-boxes

AES CAMELLIA CLEFIA DES PRESENT SERPENT
Cyclotomic 4 33 33 11 3 3
Parity-Split 6 22 22 10 4 4
Our Result 4 15 16 (S0)/15 (S1) 7 3 3
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