High-Performance Scalar Multiplication using 8-Dimensional GLV/GLS Decomposition

Joppe W. Bos, Craig Costello, Huseyin Hisil, Kristin Lauter

CHES 2013

Microsoft[®] Research

Motivation - I

	DH	ECDH
Group	$(\mathbf{F}_{p_1}^*,\!$	$(E(\mathbf{F}_{p_2}), +)$

Security level (bits)	$\log_2 p_1$	$\log_2 p_2$	Ratio DH cost : EC cost		
128	3072	256	10:1		
192	7680	384	32:1		
256	15360	521	64:1		

Source: NSA – The case for Elliptic Curve Cryptography http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - I

	DH	ECDH
Group	$(\mathbf{F}_{p_1}^*, \mathbf{X})$	$(E(\mathbf{F}_{p_2}), +)$

Security level (bits)	$\log_2 p_1$	$\log_2 p_2$	Ratio DH cost : EC cost		
128	3072	256	10:1		
192	7680	384	32:1		
256	15360	521	64:1		

Source: NSA – The case for Elliptic Curve Cryptography http://www.nsa.gov/business/programs/elliptic_curve.shtml

Can we do better?

Motivation - II

Can we do better?

Core ECC operation: **Elliptic curve scalar multiplication** sequence of point additions and point doublings **Motivation - II**

Can we do better?

Core ECC operation: **Elliptic curve scalar multiplication** sequence of point additions and point doublings

Reduce the **cost** of the group operation

- Use a different curve representation
- Use a different coordinate system
- E.g. Twisted Edwards curves with extended twisted Edwards coordinates
- See the Explicit-Formulas Database

Motivation - II

Can we do better?

Core ECC operation: **Elliptic curve scalar multiplication** sequence of point additions and point doublings

Reduce the **cost** of the group operation

- Use a different curve representation
- Use a different coordinate system
- E.g. Twisted Edwards curves with extended twisted Edwards coordinates
- See the Explicit-Formulas Database

Reduce the **number** of group operations

- Different algorithms to compute the scalar multiplication
- Reduce the number of point additions:
 e.g. use large window sizes
- Reduce the number of point doublings: e.g. scalar decomposition

Reducing the Number of Point Doublings

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[d]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

Precompute: { \emptyset , P, [λ]P, $P + [\lambda]P$ }

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

Precompute: { \emptyset , P, [λ]P, $P + [\lambda]P$ }

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

Precompute: { \emptyset , P, [λ]P, $P + [\lambda]P$ }

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

Precompute: $\{\emptyset, P, [\lambda]P, P + [\lambda]P\}$

- *d*-dimensional scalar decomposition
- Decompose a scalar k into d "mini-scalars" $k_i \approx \sqrt[a]{k}$
- Perform a multi-scalar multiplication with these *d* smaller scalars

$$[k]P = \sum_{i=0}^{d-1} [k_i \lambda^i] P = [k_0]P + [k_1]([\lambda]P) + \dots + [k_{d-1}]([\lambda^{d-1}]P)$$

Precompute: $\{\emptyset, P, [\lambda]P, P + [\lambda]P\}$

Genus 2 over **F**_p **128-bit** primes Allows: 4-GLV [BCHL-EC13]

- Larger genus means larger endomorphism
- But genus > 3 is considered insecure

 $#E(\mathbf{F}_{p_1}) \approx #Jac_C(\mathbf{F}_{p_2^2}) \text{ with } \\ \log_2(p_1) \approx ?\log_2(p_2^2) \end{aligned}$

- Extension degree of m>1 means we can use GLS
- When *m* is too large subexponential attacks or too slow

Genus 1 over \mathbf{F}_{p^2} **128-bit** primes Allows: 4-GLV/GLS [LS-AC12]

[BCHL-EC13] uses Mersenne prime: $2^{127} - 1$, we try: $2^{61} - 1$ Also the "NIST-like" prime: $2^{64} - 2285$

[BCHL-EC13] uses Mersenne prime: $2^{127} - 1$, we try: $2^{61} - 1$ Also the "NIST-like" prime: $2^{64} - 2285$

Interleaved radix-2^b Montgomery multiplication

$$C \equiv A \cdot B \cdot 2^{-bn} \mod p, \mu = -p^{-1} \mod 2^b, A = \sum_{i=0}^{n-1} a_i 2^{bi}$$

for
$$i = 0$$
 to $n - 1$ do
 $C = C + a_i \cdot B$
 $q = \mu \cdot C \mod 2^b$
 $C = \frac{C + q \cdot p}{2^b}$

[BCHL-EC13] uses Mersenne prime: $2^{127} - 1$, we try: $2^{61} - 1$ Also the "NIST-like" prime: $2^{64} - 2285$

Interleaved radix-2^b Montgomery multiplication

$$C \equiv A \cdot B \cdot 2^{-bn} \mod p, \mu = -p^{-1} \mod 2^b, A = \sum_{i=0}^{n-1} a_i 2^{bi}$$

for i = 0 to n - 1 do $C = C + a_i \cdot B$ $q = \mu \cdot C \mod 2^b$ $C = \frac{C + q \cdot p}{2^b}$ Not much we can do: this is the multiplication

[BCHL-EC13] uses Mersenne prime: $2^{127} - 1$, we try: $2^{61} - 1$ Also the "NIST-like" prime: $2^{64} - 2285$

Interleaved radix-2^b Montgomery multiplication

$$C \equiv A \cdot B \cdot 2^{-bn} \mod p, \mu = -p^{-1} \mod 2^b, A = \sum_{i=0}^{n-1} a_i 2^{bi}$$

for i = 0 to n - 1 do $C = C + a_i \cdot B$ $q \neq \mu \cdot C \mod 2^b$ $C = \frac{C + q \cdot p}{2^b}$ If $p = \pm 1 \mod 2^b$ then $\mu = \mp 1 \mod 2^b$

[BCHL-EC13] uses Mersenne prime: $2^{127} - 1$, we try: $2^{61} - 1$ Also the "NIST-like" prime: $2^{64} - 2285$

Interleaved radix-2^b Montgomery multiplication

$$C \equiv A \cdot B \cdot 2^{-bn} \mod p, \mu = -p^{-1} \mod 2^b, A = \sum_{i=0}^{n-1} a_i 2^{bi}$$

[BCHL-EC13] uses Mersenne prime:
$$2^{127} - 1$$
, we try: $2^{61} - 1$
Also the "NIST-like" prime: $2^{64} - 2285$

$$=2^{32}(2^{29}-0)-1$$

Interleaved radix-2^b Montgomery multiplication

$$C \equiv A \cdot B \cdot 2^{-bn} \mod p, \mu = -p^{-1} \mod 2^b, A = \sum_{i=0}^{n-1} a_i 2^{bi}$$
Example

Example:
$$2^b(2^{\tilde{b}}-c)-1$$

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

Weil Descent and Index Calculus

• [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10]

$$\tilde{O}(p^{2-2/ng})$$

• For a **fixed** extension degree *n* and genus *g*

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

- [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10] $O(p^{2-2/ng}\log(p)^s)$
- For a **fixed** extension degree *n* and genus *g*

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

- [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10] $O(p^{2-2/ng}\log(p)^s 2^{3n(n-1)g})$
- For a **fixed** extension degree *n* and genus *g*

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

- [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10] $O(p^{2-2/ng}\log(p)^{s}2^{3n(n-1)g})$
- For a **fixed** extension degree *n* and genus *g*

Take
$$g = n = 2$$
, $s = 1$
 $p^{3/2} \cdot \log(p) \cdot 2^{12}$

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

- [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10] $O(p^{2-2/ng}\log(p)^s 2^{3n(n-1)g})$
- For a **fixed** extension degree *n* and genus *g*

Take
$$g = n = 2$$
, $s = 1$
 $p^{3/2} \cdot \log(p) \cdot 2^{12}$

p	$\log_2 h$	$\log_2 r$	Security rho	Security i.c.
$2^{61} - 1$	32	213	105	109
$(2^{31}-201) \cdot 2^{32}-1$	31	222	109	112
$2^{64} - 2285$	33	224	111	113

Generic Attack: Pollard rho

- [Pollard-MoC78]
- $\sqrt{(\pi r)/(2\#\operatorname{Aut})}$, where $\#\operatorname{Aut} \ge 2$
- For the GLV/GLS curves #Aut = 10

Weil Descent and Index Calculus

- [P. Gaudry. J. Symb. Comp. 09], [K. Nagao. ANTS 10] $O(p^{2-2/ng}\log(p)^s 2^{3n(n-1)g})$
- For a **fixed** extension degree *n* and genus *g*

• Take
$$g = n = 2, s = 1$$

 $p^{3/2} \cdot \log(p) \cdot 2^{12}$

p	$\log_2 h$	$\log_2 r$	Security rho	Security i.c.
$2^{61} - 1$	32	213	105	109
$(2^{31}-201) \cdot 2^{32}-1$	31	222	109	112
$2^{64} - 2285$	33	224	111	113

Advantage

Smaller scalars

- Buhler-Koblitz curves: C/\mathbf{F}_{p^2} : $y^2 = x^5 + a$
- ψ : Jac(*C*) \rightarrow Jac(*C*), ψ (*D*) = [λ]*D*, for 0 < λ < *r*
- Decompose the scalar using [Park, Jeong, Lim-EC02]

Lookup table:
$$L[i] = \sum_{\ell=0}^{7} \left(\left| \frac{i}{2^{\ell}} \right| \mod 2 \right) \cdot D_{\ell}$$
 for $0 \le i < 2^8$

- Buhler-Koblitz curves: C/\mathbf{F}_{p^2} : $y^2 = x^5 + a$
- ψ : Jac(*C*) \rightarrow Jac(*C*), ψ (*D*) = [λ]*D*, for 0 < λ < *r*
- Decompose the scalar using [Park, Jeong, Lim-EC02]

Lookup table:
$$L[i] = \sum_{\ell=0}^{7} \left(\left\lfloor \frac{i}{2^{\ell}} \right\rfloor \mod 2 \right) \cdot D_{\ell}$$
 for $0 \le i < 2^8$

- Buhler-Koblitz curves: C/\mathbf{F}_{p^2} : $y^2 = x^5 + a$
- ψ : Jac(*C*) \rightarrow Jac(*C*), ψ (*D*) = [λ]*D*, for 0 < λ < *r*
- Decompose the scalar using [Park, Jeong, Lim-EC02]

ookup table:
$$L[i] = \sum_{\ell=0}^{7} \left(\left| \frac{i}{2^{\ell}} \right| \mod 2 \right) \cdot D_{\ell}$$
 for $0 \le i < 2^8$

Two lookup tables:

$$T_1[i] = \sum_{\ell=0}^3 \left(\left| \frac{i}{2^\ell} \right| \mod 2 \right) \cdot D_\ell$$

$$T_2[i] = \sum_{\ell=0}^3 \left(\left| \frac{i}{2^\ell} \right| \mod 2 \right) \cdot D_{\ell+4} \qquad \text{for } 0 \le i < 2^4$$

- ψ : Jac(*C*) \rightarrow Jac(*C*), ψ (*D*) = [λ]*D*, for 0 < λ < *r*
- Decompose the scalar using [Park, Jeong, Lim-EC02]

32D + (256 + 32)A $L[i] = \sum_{\ell=0}^{7} (\left|\frac{i}{2^{\ell}}\right| \mod 2) \cdot D_{\ell} \text{ for } 0 \le i < 2^{8}$ Two table estimate 32D + $(2 \times 16 + 2 \times 32)A$ $T_1[i] = \sum_{\ell=0}^3 \left(\left| \frac{i}{2^\ell} \right| \mod 2 \right) \cdot D_\ell$ for $0 \le i < 2^4$ $T_2[i] = \sum_{\ell=0}^{3} \left(\left| \frac{i}{2^{\ell}} \right| \mod 2 \right) \cdot D_{\ell+4}$

Naive

Lookup table:

Two lookup tables:

Performance Results – x86

Platform: Intel Core i7-3520M Ivy Bridge (2893.484 MHz), hyperthreading turned off and over-clocking ("turbo boost") disabled

We didn't aim for record-performance. There is room for improvement!

Reference	(<i>g</i> , K)	СТ	Bit sec	10^3 cycles
NIST-p224	(1, F_p)		112	302
[B-PKC06] curve25519	(1, F_p)		126	182
[FPH-ep13] 4-GLV/GLS	(1, F_{p^2})		125	92
[BCHL-EC13] Kummer	(2, F _p)		125	117
[BCHL-EC13] 4-GLV	(2, F _p)		125	156
2 ⁶¹ — 1, Kummer	(2, F_{p^2})		103	108
2 ⁶¹ — 1, 8-GLV/GLS	(2, F_{p^2})		105	100 (88)

- 3x faster than NIST
- Slightly less secure

Performance Results – x86

Platform: Intel Core i7-3520M Ivy Bridge (2893.484 MHz), hyperthreading turned off and over-clocking ("turbo boost") disabled

We didn't aim for record-performance. There is room for improvement!

Reference	(<i>g,</i> K)	СТ	Bit sec	10 ³ cycles
NIST-p224	$(1, F_p)$		112	302
[B-PKC06] curve25519	$(1, F_p)$		126	182
[FPH-ep13] 4-GLV/GLS	(1, F_{p^2})		125	92
[BCHL-EC13] Kummer	(2, F _p)		125	117
[BCHL-EC13] 4-GLV	(2, F _p)		125	156
2 ⁶¹ — 1, Kummer	(2, F_{p^2})		103	108
2 ⁶¹ — 1, 8-GLV/GLS	(2, F_{p^2})		105	100 (88)

Performance Results – ARM

Platform: BeagleBoard-xM (1 GHz Cortex-A8 ARM core) Use the Montgomery-friendly arithmetic

> We didn't aim for record-performance. There is room for improvement!

- Order of magnitude faster than NIST-p224
- Our performance in the same ballpark
- Lower security level

	Platform	(<i>g</i> , K)	СТ	Bit sec	10^3 cycles
[MTS-SASP11] NIST-p224	Cortex-A8	(1, \mathbf{F}_p)		112	7805
[BS-CHES12] curve25519	Cortex-A8 w NEON	(1, F_p)		126	527
[FPH-ep13] 4-GLV/GLS	Cortex-A9	(1, F_{p^2})		125	417
[H-ep12] twisted Edwards	Cortex-A9	(1, \mathbf{F}_p)		125	616
2 ⁶¹ — 1, Kummer	Cortex-A8	(2, F_{p^2})		103	767
2 ⁶¹ — 1, 8-GLV/GLS	Cortex-A8	(2, F_{p^2})		105	617 (576)

Conclusions

- ✓ Genus 2 over \mathbf{F}_{p^2} allows to work with 64-bit primes
- ✓ Interesting for both high-end 64-bit servers and embedded 32-bit devices
- Precomputing the lookup table for 8-GLV/GLS is more involved than for 2- and 4-GLV/GLS
- ✓ Although faster attacks exist, still provides sufficient security

See our full paper:

Cryptology ePrint Archive: Report 2013/146

The x86 implementations have been submitted to eBACS