
Sleuth:
Automated Verification of

Software
Power Analysis

Countermeasures

Ali Galip Bayrak*, Francesco Regazzoni†,
David Novo*, and Paolo Ienne*

* Ecole Polytechnique Fédérale de Lausanne (EPFL)

† TU Delft and ALaRI University of Lugano

CHES 2013

Side-Channel Attacks and Protection

CHES 2013 2

void maskedARK() {
 unsigned char i;
 for (i=0;i<16;i++){
 st[i] = pt[i] ˆ
 (key[i] ˆ mask[i]);
 }
}

void ARK() {
 unsigned char i;
 for (i=0;i<16;i++){
 st[i] = pt[i] ˆ key[i];
 }
}

+

pt[i] key[i]

st[i]

Unprotected first AddRoundKey of AES

Masked first AddRoundKey of AES

+

mask[i] key[i] pt[i]

+
st

Verification (Functionality)

CHES 2013 3

pt1 ct1
pt3

pt2 ct2

ct3

void maskedARK() {
 unsigned char i;
 for (i=0;i<16;i++){
 st[i] = pt[i] ˆ
 (key[i] ˆ mask[i]);
 }
}

✔

✔

✔

✔

Verification (Security)

CHES 2013 4

pt1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er
 C

on
su

m
pt

io
n

Time

Verification (Security)

CHES 2013 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er
 C

on
su

m
pt

io
n

Time

pt1
pt2

Verification (Security)

CHES 2013 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er
 C

on
su

m
pt

io
n

Time

pt1
pt2

pt3

Verification (Security)

CHES 2013 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er
 C

on
su

m
pt

io
n

Time

pt1
pt2

pt3

key
✔

Never Trust Your Compiler

CHES 2013 8

void maskedARK() {
 unsigned char i;
 for (i=0;i<16;i++){
 st[i] = pt[i] ˆ
 (key[i] ˆ mask[i]);
 }
}

 .text
.global ARK
 .type ARK, @function
ARK:
/* prologue: function */
/* frame size = 0 */
/* stack size = 0 */
.L__stack_usage = 0
 lds r24,key
 lds r25,pt
 eor r24,r25
 lds r25,mask
 eor r24,r25
 sts st,r24
 lds r24,key+1
 lds r25,pt+1
 eor r24,r25
 ...

avr-gcc-4.5.3 -O3

Verification is Important

CHES 2013 9

void maskedARK() {
 unsigned char i;
 for (i=0;i<16;i++){
 st[i] = pt[i] ˆ
 (key[i] ˆ mask[i]);
 }
}

lds r24,key
lds r25,pt
eor r24,r25 Sleuth

Find the sensitive operations of a given program.

Outline

• Sensitivity definitions
• Methodology
• Experimental studies

CHES 2013 10

Sensitivity Definitions

• Goal: Given a program, find the sensitive
operations, which leak critical information.

• Definitions we need:
– Program
– Types (secret, public, random)
– Leakage
– Sensitivity

CHES 2013 11

Program

• A sequence of
– branch-free
– three-address form
– arithmetic/logic or memory operations.

• Example:

 key_r = key xor m1
 pt_r = pt xor m2
 st = pt_r xor key_r

Inputs: key, pt, m1, m2

CHES 2013 12

+

pt

+
st

+

 m1 key m2

Program

• A sequence of
– branch-free

• static analysis is exponentially complex for input-
dependent branches.

• many countermeasures (e.g., masking, random
precharging) do not use such branches.

– three-address form
• x = y op z, x = y[z], or y[z] = x.
• for simplicity of representation.

– arithmetic/logic or memory operations.

CHES 2013 13

Type

• Each input is tagged with one of the types
– secret: content should not be revealed (e.g., key).
– public: content is observable by third-party (e.g.,

plaintext).
– random: uniformly distributed random values

(e.g., mask).
• Example:

 key : secret
 pt : public
 m1 : random
 m2 : random

CHES 2013 14

Leakage Model

• A model of the side-channel leakage (e.g.,
power consumption) of a device h, for a given
subset of operations d of a program p.

CHES 2013 15

+
pt

+
+

m1 key

HW

st

HW(st)

m2

+
pt

+
+

m1 key

st

m2

HD

HD(st, pt_r)

pt_r

Sensitivity

• For a given
– program p whose input variables {v0,…,vk-1} have

types {t0,…,tk-1},
– a device h,
– a leakage model l,
– sensitivity of a subset d’ of operations of p represents

whether leakage l(d’, p, h) depends on at least one
secret variable but not on any random variable.

CHES 2013 16

Sensitivity

CHES 2013 17

HW(st) = HW(key ⊕ m1⊕ pt ⊕ m2)
HW(st) ~ key ? : yes
HW(st) ~ m1 ? : yes
 not sensitive

+
pt

+
+

m1 key

HW

st

HW(st)

m2

Sensitivity

CHES 2013 18

HW(st) = HW(key ⊕ pt)
HW(st) ~ key ? : yes
HW(st) ~ m1 ? : no
 sensitive

+
pt

+
+

m1 key

HW

st

HW(st)

Methodology

CHES 2013 19

• Represent the program as a graph.

• Use satisfiability queries to detect the

dependencies and sensitivity.

CHES 2013 20

Graph Representation

r0 = key ˆ m;
r1 = pt ˆ r0;
r2 = sm[r1];

+
pt

+

m key

MUX

…
0 0 1 1 1

LUTsm r0

r1

r2

random secret public

Sample implementation in C Graph representation

Sensitivity Detection

CHES 2013 21

Is q1 sensitive?
• q1 ~ key?
• ¬ (q1 ~ m)?

HW

+
pt

+

m key

MUX

…
0 0 1 1 1

LUTsm r0

r1

r2

random secret public

q1

22

HW

+
pt

+

m

MUX

…
0 0 1 1 1

LUTsm

key&1110

Dependency Check

HW

+
pt

+

m

MUX

…
0 0 1 1 1

LUTsm

key|0001

Assign 0 to the last bit Assign 1 to the last bit
≠

SAT?

Sleuth

23

Sleuth

Implementation
Type

Annotations
Leakage
Model

Queried
Operations

Sensitive
Operations

Experimental Studies

• Compilers are not perfect.

• Programmers are not perfect.

• Countermeasures are not perfect.

CHES 2013 24

Compiler Related Problems

CHES 2013 25

• We used Hamming weight univariate leakage model.
• Detects all 16 such problems in 0.02 seconds.
• Similar problems arise in later operations (e.g., MixColumns).
 It takes 430 seconds to detect all problems in a round of AES.

Programmer Related Problems

CHES 2013 26

• In the Boolean masking algorithm of Herbst et al. [19],
st[2] and st[10] use the same mask.

• We used Hamming distance leakage model.
• Bivariate leakage will be
 HD(st[2], st[10]) = HD(st_orig[2]⊕ m, st_orig[10]⊕ m)
=
 HW(st_orig[2]⊕ st_orig[10]).
• Finds all such problems (i.e., also between line 4 and 5) in

477 seconds.

Countermeasure Related Problems

CHES 2013 27

• If we use a proper leakage model an attack is possible
[Coron and Goubin ‘00].

• We used parity of the result as a leakage model.
• Finds in 0.02 seconds.

Find A such that

Conclusions and Discussions

• Our SAT-based methodology is generic (does not
depend on the algorithm or countermeasure).

• We can find crucial real world problems (that can
invalidate the countermeasure) in a reasonable time.

• The user can make use of an extendible library of
leakage models.

CHES 2013 28

CHES 2013 29

CHES 2013 30

	Sleuth: �Automated Verification of �Software �Power Analysis Countermeasures
	Side-Channel Attacks and Protection
	Verification (Functionality)
	Verification (Security)
	Verification (Security)
	Verification (Security)
	Verification (Security)
	Never Trust Your Compiler
	Verification is Important
	Outline
	Sensitivity Definitions
	Program
	Program
	Type
	Leakage Model
	Sensitivity
	Sensitivity
	Sensitivity
	Methodology
	Graph Representation
	Sensitivity Detection
	Dependency Check
	Sleuth
	Experimental Studies
	Compiler Related Problems
	Programmer Related Problems
	Countermeasure Related Problems
	Conclusions and Discussions
	Slide Number 29
	Slide Number 30

