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Side-Channel Attacks and Protection 
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void maskedARK() {  
 unsigned char i;  
 for (i=0;i<16;i++){  
  st[i] = pt[i] ˆ  
         (key[i] ˆ mask[i]);  
 } 
}  
 

void ARK() {  
 unsigned char i;  
 for (i=0;i<16;i++){  
  st[i] = pt[i] ˆ key[i];  
 } 
}  
 

+ 

pt[i] key[i] 

st[i] 

Unprotected first AddRoundKey of AES 

Masked first AddRoundKey of AES 

+ 

mask[i] key[i] pt[i] 

+ 
st 



Verification (Functionality) 
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pt1 ct1 
pt3 

pt2 ct2 

ct3 

void maskedARK() {  
    unsigned char i;  
    for (i=0;i<16;i++){  
        st[i] = pt[i] ˆ  
             (key[i] ˆ mask[i]);  
    } 
}  
 

✔ 

✔ 

✔ 

✔ 



Verification (Security) 
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Never Trust Your Compiler 
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void maskedARK() {  
  unsigned char i;  
  for (i=0;i<16;i++){  
    st[i] = pt[i] ˆ  
       (key[i] ˆ mask[i]);  
  } 
}  
 

 .text 
.global ARK 
 .type   ARK, @function 
ARK: 
/* prologue: function */ 
/* frame size = 0 */ 
/* stack size = 0 */ 
.L__stack_usage = 0 
 lds r24,key 
 lds r25,pt 
 eor r24,r25 
 lds r25,mask 
 eor r24,r25 
 sts st,r24 
 lds r24,key+1 
 lds r25,pt+1 
 eor r24,r25 
 ... 

avr-gcc-4.5.3 -O3 



Verification is Important 
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void maskedARK() {  
  unsigned char i;  
  for (i=0;i<16;i++){  
    st[i] = pt[i] ˆ  
     (key[i] ˆ mask[i]);  
  } 
}  
 

lds r24,key 
lds r25,pt 
eor r24,r25 Sleuth 

Find the sensitive operations of a given program. 



Outline 

• Sensitivity definitions 
• Methodology 
• Experimental studies 
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Sensitivity Definitions 

• Goal: Given a program, find the sensitive 
operations, which leak critical information. 

• Definitions we need:  
– Program 
– Types (secret, public, random) 
– Leakage 
– Sensitivity 
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Program 

• A sequence of 
– branch-free   
– three-address form 
– arithmetic/logic or memory operations. 

 
• Example: 

 
 key_r = key  xor m1  
 pt_r  = pt   xor m2  
 st    = pt_r xor key_r 
 
Inputs: key, pt, m1, m2 
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+ 

pt 

+ 
st 

+ 

 m1 key  m2 



Program 

• A sequence of 
– branch-free   

• static analysis is exponentially complex for input-
dependent branches. 

• many countermeasures (e.g., masking, random 
precharging) do not use such branches. 

– three-address form 
• x = y op z, x = y[z], or y[z] = x. 
• for simplicity of representation. 

– arithmetic/logic or memory operations. 
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Type 

• Each input is tagged with one of the types  
– secret: content should not be revealed (e.g., key). 
– public: content is observable by third-party (e.g., 

plaintext). 
– random: uniformly distributed random values 

(e.g., mask). 
• Example: 

 key : secret 
 pt  : public 
 m1  : random 
 m2  : random 
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Leakage Model 

• A model of the side-channel leakage (e.g., 
power consumption) of a device h, for a given 
subset of operations d of a program p. 
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pt 
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m1 key 
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st 
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m1 key 
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Sensitivity 

• For a given 
– program p whose input variables {v0,…,vk-1} have 

types {t0,…,tk-1}, 
– a device h, 
– a leakage model l, 
– sensitivity of a subset d’ of operations of p represents 

whether leakage l(d’, p, h) depends on at least one 
secret variable but not on any random variable. 
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Sensitivity 
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HW(st) = HW(key ⊕ m1⊕ pt ⊕ m2) 
HW(st) ~ key ? : yes 
HW(st) ~ m1 ? : yes 
 not sensitive 

+ 
pt 

+ 
+ 

m1 key 

HW 

st 

HW(st) 

m2 



Sensitivity 
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HW(st) = HW(key ⊕ pt) 
HW(st) ~ key ? : yes 
HW(st) ~ m1 ? : no 
 sensitive 

+ 
pt 

+ 
+ 

m1 key 

HW 

st 

HW(st) 



Methodology 
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• Represent the program as a graph. 
 
• Use satisfiability queries to detect the 

dependencies and sensitivity. 
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Graph Representation 

r0 = key ˆ m; 
r1 = pt ˆ r0; 
r2 = sm[r1]; 

+ 
pt 

+ 

m key 

MUX 

… 
0 0 1 1 1 

LUTsm r0 

r1 

r2 

random secret public 

Sample implementation in C Graph representation 



Sensitivity Detection 
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Is q1 sensitive? 
• q1 ~ key? 
• ¬ (q1 ~ m)? 

HW 

+ 
pt 

+ 

m key 

MUX 

… 
0 0 1 1 1 

LUTsm r0 

r1 

r2 

random secret public 

q1 
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HW 

+ 
pt 

+ 

m 

MUX 

… 
0 0 1 1 1 

LUTsm 

key&1110 

Dependency Check 

HW 

+ 
pt 

+ 

m 

MUX 

… 
0 0 1 1 1 

LUTsm 

key|0001 

Assign 0 to the last bit Assign 1 to the last bit 
≠ 

SAT? 



Sleuth 
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Sleuth 

Implementation 
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Annotations 
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Model 

Queried 
Operations 

Sensitive 
Operations 



Experimental Studies 

• Compilers are not perfect. 
 
• Programmers are not perfect. 
 
• Countermeasures are not perfect. 
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Compiler Related Problems 
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• We used Hamming weight univariate leakage model. 
• Detects all 16 such problems in 0.02 seconds. 
• Similar problems arise in later operations (e.g., MixColumns).  
       It takes 430 seconds to detect all problems in a round of AES. 



Programmer Related Problems 
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• In the Boolean masking algorithm of Herbst et al. [19], 
st[2] and st[10] use the same mask. 

• We used Hamming distance leakage model. 
• Bivariate leakage will be 
      HD(st[2], st[10]) = HD(st_orig[2]⊕ m, st_orig[10]⊕ m) 
= 
      HW(st_orig[2]⊕ st_orig[10]). 
• Finds all such problems (i.e., also between line 4 and 5) in 

477 seconds.  



Countermeasure Related Problems 
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• If we use a proper leakage model an attack is possible 
[Coron and Goubin ‘00]. 

• We used parity of the result as a leakage model. 
• Finds in 0.02 seconds. 

Find A such that 



Conclusions and Discussions 

• Our SAT-based methodology is generic (does not 
depend on the algorithm or countermeasure). 

• We can find crucial real world problems (that can 
invalidate the countermeasure) in a reasonable time. 

• The user can make use of an extendible library of 
leakage models. 
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