CHES 2013

Workshop on Cryptographic Hardware and Embedded Systems

A VERY HIGH SPEED TRUE RANDOM NUMBER GENERATOR WITH ENTROPY ASSESSMENT

<u>A. Cherkaoui ^{1 2}</u>, V. Fischer ², L. Fesquet ¹ and A. Aubert ²

¹ TIMA laboratory (Grenoble – FRANCE)
 ² Hubert Curien laboratory (Saint-Etienne – FRANCE)

Santa Barbara, August 2013

Context of this Work

• Cryptography (confidential keys)

- Unpredictable, non manipulable, good statistical properties

 Ideal RNG = generates independent and uniformly distributed random numbers
 DRNG = Deterministic

- TRNGs exploit physical random processes (e.g. radioactivity, electrical noise, jitter ...)
- Unpredictability = entropy per output bit of the TRNG (physical model of the entropy source and extraction)

Extracting Random Numbers from Jitter

Simple TRNG using a flip-flop and two oscillating signals [1]

Challenges

- Jitter zone around a signal edge is very short (<1% of the oscillation period)
- Synchronisation (be in time with the jitter)

[1] R.C. Fairfield, R.L. Mortenson and K.B. Coulthart, "An LSI Random Number Generator (RNG)", in the proceedings of CRYPTO 84 on Advances in cryptology, pages 203-230, NY USA, 1985.

Self-timed Ring based TRNG

- **STR** = oscillators in which several events propagate without colliding
- STR highly suitable as source of random jitter [2]
- Self-timed ring based TRNG (STRNG) presented in [3]
 - TRNG principle and basic mechanisms
 - Prototype in Altera and Xilinx FPGAs
 - Statistical evaluation at 16 Mbit/s
 - Main features: extracts randomness from the jitter of a STR, regardless the jitter magnitude + no synchronisation is needed

[2] A. Cherkaoui, V. Fischer, A. Aubert and L. Fesquet, "Comparison of Self-timed and Inverter Ring Oscillators as Entropy Sources in FPGAs", in Design, Automation and Test in Europe conference, DATE12, pages 1325-1330, March 2012.
 [3] A. Cherkaoui, V. Fischer, L. Fesquet and A. Aubert, "A Self-timed Ring Based True Random Number Generator". In the International symposium on advanced research in asynchronous circuits and systems – ASYNC 2013. Pp. 99-106. Santa Monica, California, USA (May 2013).

Contribution

- A stochastic model for the STRNG
 - A simple entropy assessment : a lower bound for the entropy per output bit
 - No empirical parameter, only physical/measurable parameters
- A design strategy using the model and measurements
- Design in Altera Cyclone III and Xilinx Virtex 5 FPGAs, evaluation at 400 Mbit/s

Outline

- **1.** Self-timed ring oscillators : state of the art
- 2. STRNG architecture and principle
- 3. STRNG stochastic model
 - Lower bound of entropy per output bit
 - Practical use of the model
- 4. STRNG design and evaluation

5. Conclusion

STR Architecture

(a) Stage structure and truth table (b) Self-timed ring architecture

[4] I. E. Sutherland, "Micropipelines", in Communications of the ACM (Association of Computing Machinery), Vol/Issue:32/6, pages 720-738, 1989.

The Charlie effect

 Propagation delay of a Muller gate depends on the relative arrival times of its two inputs

Charlie EffectThe closer are the input events, the
longer is the stage propagation delay

• Evenly-spaced propagation locking mechanism

Multiphase STR

 Several events propagate evenly-spaced in time thanks to inherent analog mechanisms (Charlie effect)

Evenly-spaced propagation of 2 events in a 5-stage STR

• If the number of events N and the number of stages L are co-prime, the ring exhibits L different equi-distant phases with $\Delta \varphi = \frac{T}{2L}$

[5] S. FAIRBANKS, "High Precision Timing using Self-timed Circuits", Technical report no. UCAM-CL-TR-738, University of Cambridge, Computer Laboratory, January 2009, url: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-738.pdf

Jitter in STR

- Timings between successive events are auto-controlled
 - Jitter locally generated in the ring stage barely propagates to other stages
 - Deterministic variations are attenuated

Period histogram of a 96-stage STR in Altera Cyclone III (N=48)

[2] A. Cherkaoui, V. Fischer, A. Aubert and L. Fesquet, "Comparison of Self-timed and Inverter Ring Oscillators as Entropy Sources in FPGAs", in Design, Automation and Test in Europe conference, DATE12, pages 1325-9/23
 1330, March 2012.

Outline

- **1.** Self-timed ring oscillators : state of the art
- 2. STRNG architecture and principle
- 3. STRNG stochastic model
 - Lower bound of entropy per output bit
 - Practical use of the model
- 4. STRNG design and evaluation
- 5. Conclusion

STRNG Architecture and Principle

STRNG core architecture and entropy extraction principle

- STR: Multiphase, evenly-spaced signals
- Entropy extractor: Sample each signal with a reference clk, XOR tree
- STR phase resolution: ~ jitter interval around an output edge

Outline

- **1.** Self-timed ring oscillators : state of the art
- 2. STRNG architecture and principle
- 3. STRNG stochastic model
 - Lower bound of entropy per output bit
 - Practical use of the model
- 4. STRNG design and evaluation
- 5. Conclusion

Modeling of the Entropy Extraction (1)

- STR output signals
 - Mean time between 2 successive events -> intrinsec locking mechanisms of the STR
 - Effective event timing -> jitter and its standard deviation

$$X_{j-1} = N(-\frac{\Delta\varphi}{2},\sigma^2)$$
, $X_j = N(\frac{\Delta\varphi}{2},\sigma^2)$

Objective

- Compute the probability that the sampled bit is '1' or '0'
- Compute the entropy per output bit of the TRNG

$$H = -P(u)\log_2(P(u)) - (1 - P(u))\log_2(1 - P(u))$$
^{11/23}

Detailed view of two successive events in the STR

Modeling of the Entropy Extraction (2)

• Probability to sample a value 'u' in the signal $\,\Psi\,$

$X_{j-1} \le t$	$X_j \le t$	ω	ψ
false	false	'1'	\bar{u}
false	true	'0'	u
true	false	'0'	u
true	true	'1'	$ar{u}$

$$P(u) = p + p' - 2pp'$$

with
$$\begin{cases}
p = P(X_j \le t) = \Phi(\frac{t - \Delta \varphi/2}{\sigma}) \\
p' = P(X_{j-1} \le t) = \Phi(\frac{t + \Delta \varphi/2}{\sigma}) \\
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt , x \in \mathbb{R}
\end{cases}$$

Results

- Probability to sample a value 'u' in the signal Ψ

$$P(u) = \Phi(\frac{t - T/4L}{\sigma}) + \Phi(\frac{t + T/4L}{\sigma}) - 2\Phi(\frac{t - T/4L}{\sigma})\Phi(\frac{t + T/4L}{\sigma})$$

• Entropy is minimum when t=0

$$H_{m} = -P(u)_{t=0} \log_{2}(P(u)_{t=0}) - (1 - P(u)_{t=0}) \log_{2}(1 - P(u)_{t=0})$$

with $P(u)_{t=0} = 1 - 2\Phi(\frac{T}{4L\sigma}) - 2(\Phi(\frac{T}{4L\sigma}))^{2}$

Entropy in Time and Lower Entropy Bound

Lower entropy bound increases with the number of ring stages

Arithmetic Post-processing

- Data compression with a parity filter
 - Increased entropy per output bit, but at reduced bit rate

$$P(u)_{output} = 0.5 - 2^{n-1} (P(u)_{input} - 0.5)^n$$

Architecture of a 4th order parity filter

• Tune the area/bit rate trade-off for the STRNG

Practical Use of the Model

- Measure the STR oscillation period and jitter magnitude
- Plot the lower entropy bound curve as function of the number of stages

- Select the number of STR stages L so that Hm>0.99
- <u>OR:</u> Select L depending on size/area requirements then compute n the filter order to achieve Hm>0.99

Outline

- **1.** Self-timed ring oscillators : state of the art
- 2. STRNG architecture and principle
- 3. STRNG stochastic model
 - Lower bound of entropy per output bit
 - Practical use of the model
- 4. STRNG design and evaluation
- 5. Conclusion

STRNG Implementation

- One 4-input LUT (Look-up-table) per stage
 - 2 inputs for the signals F and R, 1 feedback for the memory state and 1 initialization input (SET or RESET)
- Take care of stage structures and placement to avoid bottlenecks
- Hard-wired connexions between stages and adjacent flip-flops
- **Sampling clock:** external 16 MHz quartz + PLL for multiplication
- **Data transfer:** LVDS (Low Voltage Differential Signaling) transfer to acquisition card, acquisition at **400 Mbit/s**
- Generic software parity filter for evaluation purposes

Measurement of the Entropy Source

• Experimental setup

- Wideband digital oscilloscope (3.5 GHz bandwidth and 40 Gsample/s) + Lecroy statistical tools
- Differential oscilloscope probes
- Low Voltage Differential Signaling (LVDS) FPGA outputs
- STR jitter measurement
 - Measure the minimum jitter that can be present in the device
 - Jitter magnitude around one signal edge is estimated by ([3]) σ_{min}

$$\sigma \approx \frac{\sigma_{period}}{\sqrt{2}}$$

- Phase resolution measurement
 - Mean phase resolution is computed using the following equation $\Delta \varphi = \frac{T}{2L}$

Measurement Results

• All tested configurations showed a Gaussian jitter profile

Period distribution histogram of a 127-stage STR with 64 tokens (a) Altera Cyclone III (b) Xilinx Virtex 5 (scales are 5 ps per horizontal division and 100 kilo sample per vertical division)

Device	SI	R	Measurements			
	L	N	T	$\Delta \varphi$		
	63	32	2.44 ns	$19.3 \mathrm{\ ps}$		
Cyclone	127	64	3.11 ns	12.2 ps		
III	255	128	2.93 ns	$5.7 \mathrm{\ ps}$		
	511	256	3.31 ns	$3.2 \mathrm{\ ps}$		
	63	32	2.82 ns	$21.4~\mathrm{ps}$		
	127	64	2.83 ns	$11.8~\mathrm{ps}$		
Virtex 5	255	128	2.45 ns	5.5 ps		
	511	256	2.87 ns	2.9 ps		

• Jitter magnitude

$$\sigma_{Cyclone} \approx 2 ps$$

$$\sigma_{Virtex} \approx 2.5 ps$$

Jitter and phase resolution measurement

Evaluation : AIS31 Test Suite

Device	k (STR	Raw data		Model		Compressed data	
	L	riangle arphi	T1-T4	T5-T8	H_m	n_{min}	$n_{p_{min}}$	Throughput
	63	19.3 ps	0%	0/4	0	-	7	57 Mbit/s
Cyclone	127	12.2 ps	0%	0/4	0.02	483	4	100 Mbit/s
III	255	5.7 ps	45%	1/4	0.58	7	2	200 Mbit/s
$(\sigma_{Cyclone} \approx 2ps)$	511	3.2 ps	99%	3/4	0.91	2	2	200 Mbit/s
	63	21.4 ps	0 %	0/4	0	-	8	50 Mbit/s
	127	11.8 ps	$10 \ \%$	1/4	0.13	60	3	133 Mbit/s
Virtex 5	255	5.5 ps	58%	2/4	0.78	4	2	200 Mbit/s
$(\sigma_{Virtex} \approx 2.5 ps)$	511	2.9 ps	61%	3/4	0.97	2	2	200 Mbit/s

Statistical evaluation results for the STRNG at 400 Mbit/s

- T1-T4 : FIPS 140-1 passing rates (1000 sequences of 20.000 bits)
- T5-T8 : passing tests out of 4 (~ 1 Mbyte of data)
- H_m : lower entropy per bit bound
- n_{\min} : minimal filter order to achieve 0.99 (model)
- $n_{p_{min}}$: filter order used in practice to pass T1-T8 tests
- Throughput : effective bit rate after compression

Evaluation : NIST Test Suite

- NIST SP 800-22 test suite on 1000 sequences of 1.000.000 bits with a 0.01 confidence level
- STRNG with L=511 and compression rate of 3 passes all NIST tests in Altera Cyclone III
 - Effective throughput = **133 Mbit/s**
- STRNG with L=511 and compression rate of 4 passes all NIST tests in Xilinx Virtex 5
 - Effective throughput = **100 Mbit/s**

Outline

- **1.** Self-timed ring oscillators : state of the art
- 2. STRNG architecture and principle
- 3. STRNG stochastic model
 - Lower bound of entropy per output bit
 - Practical use of the model
- 4. STRNG design and evaluation

5. Conclusion

Conclusion

- Self-timed ring based TRNG
 - Extracts randomness from the jitter of a STR, regardless the jitter magnitude
 - The design is flexible: area, bit rate and security level can be tuned with a very low design effort
 - Passes AIS31 and NIST tests at high bit rates (a few hundred Mbit/s)
- A stochastic model for the STRNG
 - A simple yet useful entropy assessment for the generator
 - Links the **security level** with the **physical parameters** of the generator
 - Uses only measurable parameters
 - Approach validated in Altera and Xilinx FPGAs

Conclusion (Not in the Paper)

- 1 Patent
- **2 circuits** (ST CMOS 28 nm and AMS CMOS .35 μm)
- Future works
 - Alarms, specific embedded tests (counting the number of events ...)
 - Embedded measurement of the entropy source
 - **Robustness evaluation** (voltage variations, EM attacks ...)

Thank you

Appendix

Inverter Ring Oscillator based TRNG

IRO-based TRNG architecture [8]

- Known issues
 - Number of needed ROs grows
 exponentially with the decreasing size of the jitter
 - True randomness vs. Pseudo randomness -> predictability

- Critical security issue
 - Dependence between the rings (locking)

[8] B. Sunar, W.J. Martin, and D.R. Stinson, "A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks". IEEE Transactions on Computers, Vol. 58, pp. 109-119 (2007).

STR Behavior

• Bubbles and tokens abstraction

Token propagation in a self-timed ring

• Two oscillation modes

Final state of STR for a fixed design depends on the ring occupancy
 – Set at the ring initialization

Frequency Behavior

- STR final state depends on
 - Charlie and drafting effect magnitude
 - Forward and reverse propagation delay ratio (Dff/Drr)
 - Occupancy or ratio between number of events and number of stages (N/L)

STR Frequency as a function of its occupancy

STR startup

• A few events re-arrange themselves as they start propagating in the ring

Controlled timings in STR

- Simulation with ~ 500 ps propagation delays
- Librairies include Charlie and drafting effects
- A 1000 ps variation is introduced
- It progressively disappears as the events propagate in the ring

