

On Measurable Side-Channel Leaks inside ASIC Design Primitives

<u>Takeshi Sugawara</u>¹, Daisuke Suzuki¹, Minoru Saeki¹, Mitsuru Shiozaki², Takeshi Fujino²

¹Mitsubishi Electric Corp. ²Ritsumeikan Univ.

- Are conventional leak assumptions (for countermeasures) still valid under recent measurement techniques?
 - Measurability boundary is focused: it is usually placed at ASIC design primitives e.g., logic gates and memory
- Approach: Make and measure a chip which enables primitive-level control
- Result: There are measurable (new) leaks inside the primitives boundaries
 - Conventional countermeasures can be broken as the assumptions are not met

Abstraction layers

Measure the chip with M-field probe

- Countermeasures & simulators are designed based on a leak assumption
 - The assumption describes our belief on the attackers' capability
 - A countermeasure is ineffective if the assumption was not correct*

*A. Moradi et al., "How Far Should Theory be from Practice? – Evaluation of a Countermeasure", CHES 2012

COPYRIGHT © 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED

3

- Difficulty: A "reasonable" assumption may become obsolete
 - Measurement & signal processing technology grow continuously
- Conventionally, the measurability boundary is placed at RTL or gate levels
 - Implicit decision is that the leaks from the lower layers are negligibly small
 - Is it really OK?

COPYRIGHT © 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED

eco

Purpose & approach

- Purpose
 - Experimentally investigate measurability of leaks inside ASIC primitives
 - Standard cells and ROM/RAM macro cells
- But, ...
 - It is very difficult to isolate the contributions of the primitives in a system-level experiment
 - Thus, basic experiments under a controlled environment are preferred
- Approach
 - Make a chip which enables primitivelevel control
 - Measure the chip with a tiny M-field probe on its surface

<section-header>

- Background
- Part I: Results on Standard Cells
 - Leak model
 - Experiments
 - Impact to conventional countermeasures
- Part II: Results on Memory
 - Leak model
 - Experiments
 - Impact to conventional countermeasures
- Conclusion

• Part I: Results on standard cells

- A leak caused by different current path in signal transitions
 - Measurability on a chip was remained open
- Example: NAND when its output transits $0 \rightarrow 1$
 - The transition is made when some of 2 parallel PMOS are ON
 - Current strengths are modulated by the number of ON transistors
 - Attackers possibly distinguish the cases even though they make the same output transitions, gaining more information than expected

*Y. Takahashi, ``Cryptographic Module Evaluation Methods for Resistance against Power Analysis Attacks," Doctoral thesis, Yokohama National University, 2012.

MITSUBISHI Model2: Internal-gate leak (of XOR) Chanaes for the Better

- Internal sub gates should be concerned if the cell internals are measurable ٠
- Common XOR cell is composed of NOR and And-Or-Inverter sub gates ٠
 - The sub gates have leaks _

FI FCTRIC

- Transition prob. bias in NOR2 and the current-path leak in AOI21
- In either cases, XOR inputs (A, B)=(0, 0) and (A, B)=(1, 1) become distinguishable —

eco

for a greener tomorrow

- A test circuit for controlling single standard cell
 - DUT (e.g., NAND cell) with enabled registers on both sides
 - Input-dependent leak is expected at two timings: T_A and T_B

eco

Experimental method 2: Measurement

M-field measurement by placing a tiny ulletloop coil on the chip surface

Mean traces are obtained for all the ۲ transition patterns (using 10k raw traces each)

Cell type	Prev .ptn.	Post. ptn.	# total patterns	# total traces
2-input NAND	2 ²	2 ²	2 ² × 2 ² =16	160,000
2-input XOR	2 ²	2 ²	2 ² × 2 ² =16	160,000

Off-the-shelf horizontal probe φ0.5mm, 3MHz – 6 GHz

Scope: Bandwidth: 12.5 GHz, Sampling: 25.0 GSa/s

- Verifying if the leak by conventional transition prob. model is measurable
 - Differential traces are made by subtracting total average from the average traces
 - Two spikes are observed when the output transit (shown in red and green)

Is current-path leak measurable?

- Comparing diff. traces: 3 cases where NAND-output transit $0 \rightarrow 1$
 - Results show (i) 2 PMOS ON and (ii) 1 PMOS ON are distinguishable at 1st spike
 - Recall: NAND is activated at 1st spike, and its output is stored at 2nd spike

COPYRIGHT © 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

Is internal-gate leak measurable?

 Comparing diff. traces: 4 patterns where XOR- output transit 1→0

MITSUBISHI

Changes for the Better

- The spikes are separated into 2 groups
- XOR inputs (A', B')=(0, 0) is now distinguishable from (A', B')=(1, 1)

	(A, B) →(A', B')	Y→Y′
(i)	(0, 1) ightarrow (0, 0)	$1 \rightarrow 0$
(ii)	(1,0) ightarrow (0,0)	$1 \rightarrow 0$
(iii)	(0, 1) ightarrow (1, 1)	$1 \rightarrow 0$
(iv)	(1,0) ightarrow (1,1)	$1 \rightarrow 0$

COPYRIGHT © 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

Consequence 1: Gate-level countermeasures

- Attack on Random Switching Logic (RSL) by Takahashi*
 - Recall: RSL is designed so that transition prob. is independent of raw input
 - However, (A, B)=(0, 0) is distinct from others when the current-path leak is considered

- It is extended to MDPL and WDDL:
 - (i) MAJ is RSL without enable, (ii) AND/OR in WDDL has different path (see paper)

*Y. Takahashi, ``Cryptographic Module Evaluation Methods for Resistance against Power Analysis Attacks," Doctoral thesis, Yokohama National University, 2012.

Consequence2: Unmasking circuit

Target:

- Distribution of the mask can be biased using leaks solely by the XOR ٠
 - Choose a subset of many traces where the output x=0. Now the XOR inputs are restricted to (x+r, r)=(0, 0) or (1, 1)
 - Recall: (A, B)=(0, 0) is distinguishable from (A, B) = (1, 1) when the internal- gate leak is considered
 - Choose a smaller subset with P(x+r=0,r=0) > P(x+r=1,r=1) using the internal gate leak. This directly corresponds to P(r=0) > P(r=1) in the final subset.

- Miller circuit*
 - A text-book circuit construction; not frequently used because of inefficiency
 - Single path is activated at any input
 - #MOS on the path is always the same
 - Can be used for any logic function

Ex. Miller XOR gate* (Inverters are omitted for clarity)

*J. P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley 2001

COPYRIGHT © 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

• Part II: Results on memory

What characterizes RAM/ROMs

- The regular (periodic) structure
 - 1-bit cells are arranged in "matrix" or "array"
 - A memory cell of interest is selected by one-hot coded selection signals generated by address decoders
- The leak of ROM/RAMs are usually modeled with Hammingweight or Hamming-distance models*

Geometric leak

- Important features
 - Row/column selection signals are placed at regular pitch
 - Usually ordered by the integer representation of the address
 - Single selection signal is activated at a time (one-hot encoding)
- Consequence
 - Leak correlated to the integer representation of the address
 - 1. Measured voltage is dependent to the distance between the probe and the driving current (= the signal line)
 - 2. The distance is dependent to the input address

Row/column selection signals

for a greener tomorrow

20

- Target: An SRAM macro cell
 - Dual-port 512-word SRAM
 - 9-bit address
 Upper 6 bits = row addr.
 Lower 3 bits = column addr.
- Address dependency is examined
 - Traces are captured while reading/writing fixed data to 512=2⁹ addresses
 - Corresponding 512 averaged traces are obtained (using 1k raw traces each)

Cell type	# patterns	# total traces
SRAM	512=2 ⁹	512,000

SRAM macro cell (under metal)

- Relationship between address and measured voltage at POI is visualized •
 - Decreasing trend + 8 iterated patterns are observed
 - The results indicate the leak correlated to the integer _ representation of the address

Horizontal: Integer representation of the input address Vertical: Measured voltage at POI

• Further verification by fitting a model:

 $L_{adr} \doteq k_0 \times int(Row addr.) + k_1 \times HW(Row addr.)$

```
+ k_2 \times \text{int}(\text{Col. addr.}) + k_3 \times \text{HW}(\text{Col. addr}) + \text{bias } \dots (1)
```

Unknown constants k_i and bias are estimated using regression analysis

- The model efficiently describes the measured values
 - The model fits well even without the HW components

Blue: Measured val., Black: Eq. (1), Red: Eq. (1) without HW components

Consequence

- In addition, some countermeasures using ROM-based S-box are broken
- Dual-rail RSL memory*
 - A hybrid of masking & hiding
 - The hiding part employ ROM with dual-rail & pre-charge techniques
 - The regular matrix structure is suitable for capacitive balancing and timing control
 - However, the memory array has the same periodic structure as the previous SRAM

* Y. Hashimoto, K. Iwai, M. Shiozaki, S. Asagawa, S. Ukai, T. Fujino, ``AES Cryptographic Circuit utilizing Dual-Rail RSL Memory Technique'', SCIS 2012, (in Japanese).

Dual-Rail RSL memory

Masking / dual-rail conversion

24

for a greener tomorrow

- Another chip implementing AES using dual-rail RSL mem. is measured
- Relationship between addr. and measured voltage is examined (again)
 - The saw-tooth shape indicates linearity to the integer representation of the address
 - NOTE: It is observed only under EM measurement

Note: the order of the row and column addresses are swapped thus it looks differently Row addr. (Lower 6 bits) Col. addr. (Upper 2 bits)

- A variant of correlation power analysis is applied to the EM traces ullet
 - More than a half of the key bytes are recovered at 1k traces
 - Cf. it was secure more than 100k traces under power measurement

- Summary
 - Leaks inside the cell boundaries are measurable
 - The current-path and internal-gate leaks of standard cells
 - The geometric leak of ROM/RAM macro cells
 - Some countermeasures are broken using the leaks
- Open problems
 - Significance of the leak in system-level experiments
 - Experiments using recent CMOS technologies
 - Measurement will be challenging in terms of bandwidths
 - Study on other potential leak sources
 - Different MOS resistances by (i) layout and/or (ii) fabrication variations
 - What is a reasonable assumption?
 - Can we treat the increasing measurement technology in the same manner as the computational assumption?
 - An efficient simulation method