Secure your digital life™

An Accurate Probabilistic Reliability Model for Silicon PUFs

Roel Maes Intrinsic-ID, the Netherlands

CHES-2013

Introduction: Silicon PUFs and Reliability

- Basic PUF properties:
 - 1. Uniqueness:
 - Equivalent responses from distinct PUF instances are sufficiently different
 - 2. (Un)reliability:
 - Equivalent responses from one single PUF instance are sufficiently alike (up to a few errors)
- Both properties have an equally important impact on the PUFs usability and efficiency


```
HD(A; B) = large
```


HD(A:enroll; A:reconstruct) = small

Problem Statement: "Old" Error Model

PUF Response

Error model in use until now:

- single fixed error rate p_e
- every cell equally likely to produce an error on every evaluation

(= binary symmetric channel)

Problem:

Does not realistically/accurately describe actual PUF reliability behavior...

this becomes apparent when we evaluate the same PUF response many times...

Problem Statement: Experimental Observation

errors in 60 evaluations of a cell

New Model: Approach = Hidden Variable Model

New Model: Distribution Derivation

Model relation:

$$r_i^{(j)} = \begin{cases} 0 , \text{ if } m_i + n_i^{(j)} \le t , \\ 1 , \text{ if } m_i + n_i^{(j)} > t . \end{cases}$$

Hidden distribution assumptions: $M \sim \mathcal{N}(\mu_M, \sigma_M^2)$ $N_i \sim \mathcal{N}(0, \sigma_N^2)$

$$p_{e,i} \stackrel{\text{def}}{=} \mathbf{Pr}\left(R_i \neq r_i^{\text{enroll}}\right)$$

Cell error-probability distribution:

$$\mathbf{cdf}_{P_e}\left(x\right) = \lambda_1 \cdot \int_{-\infty}^{\Phi^{-1}(x)} \Phi\left(-u\right) \cdot \left(\varphi\left(\lambda_1 u + \lambda_2\right) + \varphi\left(\lambda_1 u - \lambda_2\right)\right) \, \mathrm{d}u$$

New Model: Experimental Fit

Cell error-count distribution: $\mathbf{pmf}_{S_e^{(n)}}(x) = \int_0^1 f_{\text{bino}}(x; n, u) \cdot \mathbf{pdf}_{P_e}(u) \, \mathrm{d}u$

Experimental data: from UNIQUE project [Katzenbeisser et al., CHES-2012]

	PUF type	MSE of fit	λ_1	λ_2
-	SRAM	4.5 ^e -9	0.12	0.02
	Buskeeper	5.8 ^e -10	0.09	0.03
	DFF	1.2 ^e -9	0.08	0.04
	Arbiter	1.8 ^e -9	0.07	0.05

New Model + Temperature?

New Model + Temperature: Distribution Derivation

New Model + Temperature: Experimental Fit

Secure your digital life™

Interpretation of New Model Error Distribution

Majority of errors in a PUF response are caused by a small minority of cells

Implications for PUF-based Key Generation

Fuzzy Extractor System: (spec.: 128-bit entropy with > 1-10⁻⁹ reliability)

\mathbf{F}_{PB} = Poisson-Binomial distribution: when trials are independent but no longer identically distributed

Implications for PUF-based Key Generation

Main Conclusions

- New PUF reliability model is realistic, generic and very accurate:
 - Hidden variable model makes cell-specific behavior explicit
 - Yields analytic expressions for **error-probability distributions**
 - Can be fit very accurately on experimental observations, including temperature dependent behavior
 - Applicable to most Silicon PUF types, both memory- and delay-based
- Allows to study full PUF reliability behavior
 - As opposed to only average-case behavior in old model
 - Shows very skewed distributions:
 "large majority of PUF errors are caused by small minority of PUF cells"
 - Enables **Monte-Carlo simulations** to study effect on PUF-based applications, e.g. key generators

Secure your digital life™

Thank you!

Any questions?