Success through confidence: Evaluating the effectiveness of a side-channel attack

Adrian THILLARD, Emmanuel PROUFF, Thomas ROCHE

ANSSI (French Network and Information Security Agency)

CHES 2013, Wednesday, August 21st Santa Barbara, CA

Context of this work

- Embedded Systems integrating Cryptography manipulate a secret key K.
- A Side-Channel Attack aims at recovering *K* through the observation of the device behavior.

Assessment of a CPA success rate Confidence in a result

Divide and conquer strategy

• Divide the secret in chunks and conquer each chunk separately

Assessment of a CPA success rate Confidence in a result

Divide and conquer strategy

• Divide the secret in chunks and conquer each chunk separately

 Some of the partial attack results are wrong! ⇒ all tests of full key will fail and it will be impossible to correct!

Divide and conquer strategy

• Assess a confidence to each result.

- Missing chunks are retrieved using an exhaustive search or Key Enumeration Algorithm (*Veyrat-Charvillon* SAC 12).
- Issue: how to compute the confidence?

Computing confidence

	N=50msgs	N=150msgs	N=250msgs	• • •	N=500msgs
k_0	94th	67th	89th		1st
k_1	88th	224th	97th		188th
k ₂	160th	60th	77th		2nd
<i>k</i> 3	146th	185th	58th		250th
:				÷.,	-
k _n	119th	159th	184th		210th

Rankings obtained by CPAs attacks

Computing confidence

- A large amount of information is not used!
- Issue: How to evaluate a priori the confidence ?
- Associate to each candidate a specific confidence
- Use success rate evaluations as tools to compute confidence when the correct key is unknown
 - Those evaluations are well-known and are accurate evaluation of the confidence, when the secret is known by the attacker
 - They can be adapted when the correct key is unknown
- Study of the most usual attack: CPA

CPA success rate

- CPA is based on correlation coefficient
- Formulas derived by *Mangard* (2004) and *Standaert et al.* (2006) assume that asymptotically, every wrong hypotheses leads to a null correlation
- Useful to have the general attacks trend BUT what about the accuracy of the formulas?
- Is this assumption correct?
- Experiment: Simulate several CPA on the AES Sbox output
 - assuming Hamming weight leakage
 - assuming Gaussian noise with std 3
 - average the rankings obtained for each hypothesis.

CPA success rate

- The correct hypothesis converges towards first place
- Wrong hypotheses also converge to a fixed rank!
- Hence, analyses without Mangard's assumption should be more accurate

Confusion coefficient

- [*Rivain* SAC 08]: new evaluation of the CPA SR relaxing Mangard's assumption!
- [*Fei et al.* CHES 12]: DPA confusion coefficient for the DPA SR
- [This work]: Rivain's work can be rewritten using a new CPA confusion coefficient:

$$\kappa_{\delta} = rac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} HW(SB[x \oplus k^*])HW(SB[x \oplus k^* \oplus \delta]),$$

where δ is the xor-distance of the hypothesis to the good hypothesis k^{\ast}

Assessment of a CPA success rate Confidence in a result

Confusion coefficient

• $\kappa_0 - MAX(\kappa_\delta)$ is higher for AES (1.67) than for DES (0.58) \implies ghost peaks are more likely to appear with DES

CPA success rate vs confusion coefficient

- Let ρ_k be the correlation coefficient for the hypothesis k
- Consider the comparison vector $\vec{c_{k^*}} = (\rho_{k^*} \rho_k)_{k \neq k^*}$
- [*Rivain* SAC08]: the rank of $k^* = \#$ of positive coordinates in $\vec{c_{k^*}}$

•
$$\vec{c_{k^*}} \sim \mathcal{N}(\vec{\mu}, \Sigma)$$
 where:

$$egin{aligned} ec{\mu} &= (\kappa_0 - \kappa_i)_{i>0}, \ \Sigma &= rac{\sigma^2}{N} (\kappa_0 - \kappa_i - \kappa_j + \kappa_{i\oplus j})_{i,j>0} \end{aligned}$$

Assessment of a CPA success rate Confidence in a result

Formulas' comparison

Figure : Comparison of success rate evaluations

Unknown correct key

Given a limited number N of observations, and an unknown correct key

- How to select a candidate?
- How to compute a confidence for this candidate?

Why do we need a confidence level?

- If the result of a partial attack is incorrect \implies FAILURE of the whole attack
 - Even if exhaustive search is allowed
- Need for a confidence level
- Need to allow the selection rule to output no candidate
 - The cost of the hypotheses test step is increased by a factor $|\mathcal{K}|$ (e.g. by 256)
- We argue that we'd rather increase complexity than never pass the attack!

How to build confidence?

- Compute scores (correlation coefficients) for several numbers of observations, for each hypothesis in the subkey hypothesis set \mathcal{K} .
- Define a selection rule (usually choose the hypothesis with the highest score!).

Confidence level

For a selection rule \mathcal{R} outputing an hypothesis $k^{\mathcal{R}}$, we define the confidence level $c(k^{\mathcal{R}})$:

$$c(k^{\mathcal{R}}) = rac{P(k^{\mathcal{R}} = k^*)}{1 - P(k^{\mathcal{R}} = \emptyset)}$$

Note the difference with the success rate:

1

$$SR = P(k^{\mathcal{R}} = k^*)$$

 \implies The success rate merges with the confidence level only when ${\cal R}$ always returns a candidate

Defining a selection rule

• We have 500 observations

	N=50msgs	N=150msgs	N=250msgs	• • •	N=500msgs
k_0	0.35	0.39	0.39		0.37
k_1	0.38	0.25	0.34	• • •	0.15
k ₂	0.29	0.40	0.42	• • •	0.20
<i>k</i> 3	0.31	0.32	0.44	• • •	0.09
:	•			•••	•
k _n	0.33	0.34	0.17	• • •	0.12

Average of correlation coefficients

• Averages are made on the 500 messages

Usual rule ${\cal R}$

• We have 500 observations

	N=50msgs	N=150msgs	N=250msgs	• • •	N=500msgs
k_0	94th	67th	89th	• • •	1st
k_1	88th	224th	97th	• • •	188th
<i>k</i> ₂	160th	60th	77th	• • •	2nd
<i>k</i> 3	146th	185th	58th	• • •	250th
•••					•
k _n	119th	159th	184th	• • •	210th

Rankings obtained by CPAs attacks

• Averages are made on the 500 messages

Usual rule ${\cal R}$

• We have 500 observations

	N=50msgs	N=150msgs	N=250msgs	• • •	N=500msgs
k_0	94th	67th	89th	• • •	1st
k_1	88th	224th	97th	• • •	188th
k_2	160th	60th	77th	• • •	2nd
k_3	146th	185th	58th	• • •	250th
				÷.,	
kn	119th	159th	184th	• • •	210th

Rankings obtained by CPAs attacks

• Averages are made on the 500 messages

Constructing new rule

• Knowing that the candidate key is eventually ranked first, is the convergence towards this rank coherent with that of the correct hypothesis?

Constructing new rule

	N=50msgs	N=150msgs	N=250msgs		N=500msgs
k_0	94th	67th	89th	• • •	1st
k_1	88th	224th	97th		188th
k ₂	160th	60th	77th		2nd
<i>k</i> 3	146th	185th	58th		250th
:				÷.,	-
k _n	119th	159th	184th		210th

Rankings obtained by CPAs attacks

	N=50msgs	N=150msgs	N=250msgs		N=500msgs
<i>k</i> 0	94th	67th	89th	• • •	1st
k_1	88th	224th	97th		188th
k_2	160th	60th	77th		2nd
<i>k</i> 3	146th	185th	58th		250th
:				÷.,	-
k _n	119th	159th	184th		210th

Rankings obtained by CPAs attacks

An example - Defining a new selection rule

- Classic rule \mathcal{R} : select the best ranked key.
- Let's define selection rule \mathcal{R}' : output the best ranked hypothesis only if a CPA with the first $\frac{N}{2}$ observations also ranks this hypothesis first.
- Knowing the noise, we can extend the previous results and accurately compute the confidence level.

Assessment of a CPA success rate Confidence in a result

Comparison with "always outputs"

Figure : Comparison of rules, $\sigma = 10$

Interpretation

- © The success rate associated to our rule is bad
- © The rule induces a large number of false negatives
- © But a small number of false positives
- © Therefore we get a strong confidence in the result when we actually get one

Interpretation

- When the key was already ranked first, there is a better chance that it is indeed correct
- One can actually quantify this confidence
- This helps making a sound choice of which partial attacks to deem as successes, thus improving the efficiency of the whole attack

Another example

	N=50msgs	N=150msgs	N=250msgs		N=500msgs
k_0	0.35	0.39	0.39	• • •	0.37
<i>k</i> ₁	0.38	0.25	0.34	• • •	0.15
k ₂	0.29	0.40	0.42	• • •	0.20
k3	0.31	0.32	0.44		0.09
:				÷.,	
k _n	0.33	0.34	0.17	• • •	0.12

Correlation coefficients obtained by CPAs attacks

• It has been proposed by Messerges to look at the difference between the scores of the first and second ranked keys

	N=50msgs	N=150msgs	N=250msgs		N=500msgs
k_0	0.35	0.39	0.39		0.37
k_1	0.38	0.25	0.34		0.15
k ₂	0.29	0.40	0.42		0.20
<i>k</i> 3	0.31	0.32	0.44		0.09
:	-			÷.,	
k _n	0.33	0.34	0.17		0.12

Correlation coefficients obtained by CPAs attacks

Another example

Figure : Confidence with $\sigma=$ 10, given the difference between the two best ranked keys

Conclusion and perspectives

• Consider this table:

	N=50	N=150	N=250		N=500
k_0	0.35	0.39	0.39		0.37
k_1	0.38	0.25	0.34		0.15
k ₂	0.29	0.40	0.42		0.20
<i>k</i> 3	0.31	0.32	0.44	•••	0.09
÷	:	:	:	14	÷
k _n	0.33	0.34	0.17		0.12

- Define a rule exploiting more information in this table
- Are there redundant information in this table ?
- Find success rate formulas for other attacks (higher order CPAs, MIA, ···)
- Does the notion of confidence depend on the attack ?

$\ddot{\smile}$ Thank you for your attention!

