

RUHR-UNIVERSITÄT BOCHUM

On the Simplicity of Converting Leakages from Multivariate to Univariate

21. Aug. 2013

Amir Moradi, Oliver Mischke

Embedded Security Group + Hardware Security Group Ruhr University Bochum, Germany hg Horst Görtz Institute for IT-Security

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

Outline

- Definitions, Masking, etc.
- Target masking scheme
- The story behind our findings
- Practical issues

Masking

- Well-known SCA countermeasure
- to make the SC leakages independent of expected intermediate values
- Randomness is required
- Let's consider the most common one, Boolean Masking

Univariate vs. Multivariate Attacks

Masking in Hardware

- Pre-computing the masked tables in software
 - Sequential operations, Time consuming, Low efficiency
- High efficiency is desired in HARDWARE
 - amongst the main reasons
- ad-hoc/heuristic schemes
- Processing the mask (m) and masked data $(i \oplus m)$ simultaneously
 - joint distribution of SC leakages mainly because of GLITCHES
 - possible attacks
- Systematic schemes
 - Threshold Implementation, Security against 1st order attacks

Desired: security against univariate attacks of any order

Target Scheme

- Prouff, Roche: Higher-Order Glitches Free Implementation of the AES Using Secure Multi-party Computation Protocols. CHES 2011.
- Multi-party computation + Shamir's secret sharing
- Basic GF(2⁸) operations, e.g., addition is easy
 - Multiplication needs more effort

- Our goal
 - Hardware implementation using minimum settings
 - Using a Virtex-5 FPGA (SASEBO-GII)

Target Scheme - Design

Target Scheme - Design

Target Scheme - Performance

- 66 clock cycles for Inversion, 66 clock cycles for Affine
 - One Sbox in 132 clock cycles
- One full SubBytes in 132 × 16 = 2112 clock cycles
- One full MixColumns + AddRoundKey in 12 × 16 = 192 clock cycles

Design	\mathbf{FF}		LUT		Slice		SB	MC + ARK	Encryption
	#	%	#	%	#	%	CLK	\mathbf{CLK}	CLK
1 SB MC	315	1%	1387	5%	859	12%	2112	192	22896
16 SB MC	4275	15%	21328	74%	no fit		132	12	1431

- Hard to convince the industry sector?
- getting close to software?
- Gaining univariate resistance at what price?

• A variant by processing all three shares at the same time

A variant by processing all three shares at the same time

Original Design, 3MHz

Original Design, 3MHz

Measurement Setup

CHES 2013 | Santa Barbara | 21. Aug 2013

Measurement Setup

Amplified Setup

Target Scheme – Evaluation (Standard Setup)

Original Design, 3MHz

Standard vs. Amplified Setup

SAKURA-G

SAKURA-G

hg RUB

Efficiency as a Factor

Figure 3.12. The power consumption of the AES ASIC during four clock cycles. A different clock frequency has been used for each of the four traces.

Power Analysis Attacks Revealing the Secrets of Smart Cards

Efficiency as a Factor

Original Design, Standard Setup, 24MHz

Summing Up / Future Issues

- Cost of univariate resistance
 - security-performance tradeoff
 - processing the shares consecutively
- a light at the end of the tunnel by [pure] masking in hardware?
 - slowly reaching the software performance?
 - making a processor by giant hardware?
 - relatively easy ways to combine the leakages
 - measurement setup & high clock freq.
- What to do when evaluating a countermeasure / product?
 - without any addition/modification on measurement setup?
 - not fair, the attacker may do it
 - with any sophisticated measurement setup?
- not fair, its security relies on a univariate leak-free scheme CHES 2013 | Santa Barbara | 21. Aug 2013

Thanks! Any questions?

amir.moradi@rub.de

Embedded Security Group, Ruhr University Bochum, Germany

hgi Lehrstuhl fürs Embedded Security