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Motivation 

  Quantum computers can solve Discrete Logarithm problem and 
Factorization problem 

  Alternatives must be found 
  MQ based cryptography is one solution 
  Many MQ schemes were partially or fully broken in the past 
  Few implementations exist of the remaining schemes 
  Fair comparison of schemes was only possible theoretically 
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Goals 

  Implement 
•  all currently secure schemes 
•  with the same security level 
•  configurable code 
•  including all currently known optimizations 

  Show that MQ schemes are a good alternative to current schemes? 
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MQ Signature Schemes - Basics 
  sign() maps the message to signature with the secret key 
  verify() maps the signature to message with the public key 
  If the verification result is not the original message, the signature is invalid 
  sign and verify are inverses of each other 
  verify(sign(message)) = message 
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MQ Signature Schemes - Basics 

  Four maps exist in a general MQ scheme: P, S, F, and T 
  P is the composition of S, F, and T and is the public key, P = T ○ F ○ S 
  S, F, and T are the secret key 

sign 

Inversion	
  of	
  P	
  is	
  hard	
  because	
  P	
  is	
  a	
  large	
  MQ	
  system	
  

verify 
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Schemes 
UOV 

Invert F 

Invert S 

Rainbow 

Invert T 

Invert F 

Invert S 

enTTS 

Invert T 

Invert F 

Invert S 
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Linear Maps 

  Maps or transformations can also be seen as functions 
  There exist two types of maps in MQ schemes: linear and MQ maps 

  Linear maps mix variables and therefore “hide” existing structure 
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Inverting Linear Maps 

  S and T can be inverted by matrix inversion 
  Matrix inversion can be done by Gaussian elimination algorithm for each 

column of identity matrix 
  Inversion of a linear map is matrix vector multiplication with the inverse 

T -1 
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MQ Maps 

  F and P are MQ maps 

  P has no special structure and is large, therefore hard to invert 

  A special structure in F is necessary to allow easy inversion 
  This special structure is hidden by S and T 

  

3 x1x1 + 8 x1x2 + 5x1x3 + 8 x2x2 + 6x2x3 + 2x3x3 = m1 

1 x1x1 + 7 x1x2 + 9x1x3 + 3 x2x2 + 7x2x3 + 2x3x3 = m2  
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Inverting Central Maps - UOV 
  Two variable groups: Oil & Vinegar 
  Fix vinegar variables to make  

system linear 
  A quadratic linear equation 

system remains after fixing 
  Apply Gaussian elimination 

to get a solution for the oil variables 
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Inverting Central Maps - Rainbow 

  Two or more layers (like a Rainbow) 
  Solve first layer as normal UOV instance 
  In next layer fix vinegar variables 

not randomly but with 
solution from previous 
layer 

  Solve layer again with 
Gaussian elimination 

Rainbow(3,2,4) :                 x1 x2 x3           x4 x5                             x6 x7 x8 x9 
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Inverting Central Maps - enTTS 
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Inverting Central Maps – enTTS 
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Inverting Central Maps - enTTS 
  enTTS Layer 1: 

•  Fix x1 to x7 randomly 
•  Multiply with coefficients to get a LES 
•  Solve with Gaussian elimination 

enTTS(20,28) :  x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27  
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Inverting Central Maps - enTTS 

  enTTS Layer 2: 
•  Can be solved directly 

enTTS(20,28) :  x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27  
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Inverting Central Maps - enTTS 

  enTTS Layer 3: 
•  Fix x0 randomly 
•  Multiply already known values with coefficients to get a LES 
•  Solve LES 

enTTS(20,28) :  x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27  
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Optimizations - Reduced Polynomials 

  Leaving out linear and constant terms in polynomials saves time and space 
  Can be applied to UOV and Rainbow 

  In the linear transformations the constant parts are also left out 
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Optimizations - Self Invertible Linear Maps 

  In case of UOV and Rainbow S can be chosen of the form: 

  S is self invertible S-1 = S ,so no inversion is necessary. 
  Multiplications in UOV signature generation are reduced from n·n to o·v 
  Private key is smaller 
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Optimizations - 0/1 UOV 

  0/1 UOV is an optimization for UOV 
  Petzold, Thomae, Wolf et. al  

showed that large parts of the public 
key can be chosen randomly fixed 

  This part can be treated as a system 
parameter and is not part of the public key 
anymore 

  Faster verification is possible because the 
arithmetic in GF(2) is easier: 
1= copy or 0 = not 
•  An additional check is necessary if an 

element is from GF(2) or GF(28) 
  Key generation: First choose P and then calculate F 
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Implementation - Central Map Memory Mapping  
  Keys are saved without zeros 
  Serial read out using pointer++ 
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Implementation – Exponential Representation 

  GF(28) arithmetic with table look up 
  Multiplication is addition in exponent mod (2m-1) 

  Saving memory access by keeping temporary results in exponential 
representation when next operation is a multiplication 

  Keys are saved in exponential representation, too. 

mul(a,b) = exp(log(a)+log(b) mod (2m-1))      3 pgm_read() 

mul( mul(a,b) , c ) = exp( log[ exp(log(a)+log(b) mod (2m-1)) ]+log[c] mod (2m-1))     6 pgm_read() 

mul( mul(a,b) , c ) = exp( (log(a)+log(b) mod (2m-1)) +log[c] mod (2m-1))                   4 pgm_read() 
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Implementation – Generic Code 

  Heavy use of #define 
  Code generator for enTTS 
  Increasing parameters is 

very easy 
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Comparison – Parameter Choice 
  Due to the 8bit micro controller GF(28) was chosen as the field 
  To be able to compare the schemes on equal conditions parameters for 

equal security levels are necessary 
  For every scheme exist different attacks 
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Comparison - Sign 
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Comparison - Verify 
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Comparison – Other Schemes 

  Our implementations:  
•  enTTS(5,20,28) [security < 264] sign in 4.79 ms / verify 35.22 ms 
•  enTTS(9,36,52) [280] sign in 19.03 ms / verify in 208.07 ms 
•  Rainbow(18,13,17) [280] sign in 54.38 ms / verify in 69.19 ms 

  Other schemes: 
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Conclusion 

enTTS 
Signature time 

Secret key size 

Rainbow 
Verification time 

Public key size 

UOV & 0/1 UOV 
Code size 

(Public key size) 
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Future aspects 

  0/1 UOV could be improved by using a generated or cyclic system parameter 
instead a fixed one 

  0/1 UOV could save 8 elements in one byte instead of saving 1 bit in a byte 
  The focus of this work was on fast schemes, the code size / time trade-off 

could be investigated further 
  Assembler implementations could speed up the schemes even more 
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Thank you for your attention. 
Any Questions? 
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Optimizations - 0/1 UOV 

  To prevent a reduction of the key to 
elements only from GF(2), a special 
monomial ordering is necessary 

  Elements must be combined in a way that 
even when many GF(28) elements are 
fixed the key has still elements from GF(28) 
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0/1 UOV Key Gen – Complementary Turań Graph 
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0/1 UOV Key Gen – Choosing S 
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0/1 UOV Key Gen – Choosing B from GF2 



38 

Efficient Implementations of MQPKS on Constrained Devices 

Peter Czypek,Stefan Heyse, Enrico Thomae 

Ruhr-University Bochum | Embedded Security 

0/1 UOV Key Gen – Calculating A 
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0/1 UOV Key Gen – Inverting A 
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0/1 UOV Key Gen – Calculating F and P 


