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GRAIN family of Stream Ciphers
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Grain Family

• Proposed by Hell et al in 2005

• Part of E-stream’s hardware portfolio

• Bit-oriented, Synchronous stream cipher

• The first version (v0) of the cipher was cryptanalyzed

1. A Distinguishing attack by Kiaei et. al (Ecrypt : 071).
2. A State Recovery attack by Berbain et.al (FSE 2006).

• After this, the versions Grain v1, Grain 128, Grain 128a were
proposed.
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Motivation

• No fault analysis of Grain v1 has been reported.

• Existing works (Berzati et. al. HOST 09, Karmakar et. al.
Africacypt 11) are on Grain-128.

• Grain-128 has a relatively uncomplicated output function

h(s0, s1, . . . , s8) = s0s1 + s2s3 + s4s5 + s6s7 + s0s4s8

• Hence, fault analysis is relatively simpler.
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General Structure of the Grain Family
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Figure: Structure of Grain v1
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Grain v1

In Grain v1 the size of Key n = 80 bits and the IV is of size m = 64
bits. The value of pad used in the KLA is P = 0xFFFF . The LFSR
update rule is given by

yt+80
∆
= f (Yt) = yt+62 + yt+51 + yt+38 + yt+23 + yt+13 + yt

The NFSR state is updated as follows

xt+80 = yt + g(Xt)

where g(Xt) =

xt+62 + xt+60 + xt+52 + xt+45 + xt+37 + xt+33 + xt+28 + xt+21+

xt+14 + xt+9 + xt + xt+63xt+60 + xt+37xt+33 + xt+15xt+9+

xt+60xt+52xt+45 + xt+33xt+28xt+21 + xt+63xt+45xt+28xt+9+

xt+60xt+52xt+37xt+33 + xt+63xt+60xt+21xt+15+

xt+63xt+60xt+52xt+45xt+37 + xt+33xt+28xt+21xt+15xt+9+

xt+52xt+45xt+37xt+33xt+28xt+21
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Grain v1

The output keystream is produced by combining the LFSR and NFSR
bits as follows

zt =
⊕
a∈A

xt+a + h(yt+3, yt+25, yt+46, yt+64, xt+63)
∆
=

⊕
a∈A

xt+a + h(Xt ,Yt)

where A = {1, 2, 4, 10, 31, 43, 56} and

h(s0, s1, s2, s3, s4) =s1 + s4 + s0s3 + s2s3 + s3s4 + s0s1s2 + s0s2s3+

s0s2s4 + s1s2s4 + s2s3s4.
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Keystream generating routines

• Key Loading Algorithm (KLA)
◦ n-bit key K → NFSR
◦ m-bit (m < n) IV → LFSR[0]. . .LFSR[m-1]
◦ p = n −m bit pad P → LFSR[m]. . .LFSR[n-1]

• Key Schedule Algorithm (KSA)
◦ For 2n clocks, output of h′ is XOR-ed to the LFSR and NFSR update

functions
◦ yt+n = f (Yt) + zt and xt+n = yt + zt + g(Xt)

• Pseudo Random bitstream Generation Algorithm (PRGA)
◦ The feedback is discontinued
◦ yt+n = f (Yt) and xt+n = yt + g(Xt)
◦ zt = h′(X t ,Y t)
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Differential Fault Attack
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Fault Model

• The attacker is able to reset the system with the original Key-IV
and start the cipher operations again.

• The attacker can inject a fault at any one random bit location of
the LFSR or NFSR.

• The fault in any bit may be reproduced at any later stage of
operation, once injected.(Berzati et. al. HOST 09)

• The attacker has full control over the timing of fault injection, i.e.,
it is possible to inject the fault precisely at any stage of the cipher
operation.
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Identifying Fault Location
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Location Identification

• Apply a fault at a random LFSR location: imperative to determine
fault location before proceeding.

• This is done by comparing the fault-free and faulty Key-streams.

• More than one fault at same location may be required to
conclusively identify the location.
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The Idea

• Consider 2 initial states S0, S0,∆79 such that S0 ⊕ S0,∆79 = s79

In all rounds k ∈ [0, 79] \ {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76},
the difference does not affect output keystream bit.
At all these rounds output of S0,S0,∆79 guaranteed to be equal. Hence
formulate signature vector Sgn79= FFFE FFFF BFF7 EDBD FB27.

• Idea is to match the sum of faultless and faulty keystream bits with
all Sgnφ for φ ∈ [0, 79]
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Notations

• S0 is the initial state of the Grain v1 PRGA.

• S0,∆φ
is the initial state after faulting LFSR location φ ∈ [0, 79]

• Z = [z0, z1, . . . , zl ]⇒ first l fault-less keystream bits.

• Zφ = [zφ0 , z
φ
1 , . . . , z

φ
l ]⇒ first l faulty keystream bits.

Define l bit vectors Eφ, Sgnφ ⇒ Eφ(i) = 1 + zi + zφi
⇒ Sgnφ(i) =

⊙
S0

Eφ(i)
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More Definitions

For any element V ∈ {0, 1}l

• Define support of V → BV = {i : 0 ≤ i < l , V (i) = 1}
• Define a relation � in {0, 1}l s.t. ∀V1,V2 ∈ {0, 1}l ,

V1 � V2 if BV1 ⊆ BV2

1. � is a partial order in {0, 1}l
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The Task

• Given Eφ : Find φ

• Elements in BEφ
→ PRGA rounds i during which zi = zφi .

• For the correct value of φ :

BSgnφ
⊆ BEφ

⇒ Sgnφ � Eφ

• Strategy : Formulate the candidate set

Ψ0 = {ψ : 0 ≤ ψ ≤ 79, Sgnψ � Eφ}

• If |Ψ0| = 1 then the element in Ψ0 is surely φ.
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If |Ψ0| 6= 1

• Reset the cipher. Go to PRGA round l and fault the same location
φ.

• Recalculate Eφ. Re-employ strategy

Ψ1 = {ψ : ψ ∈ Ψ0, Sgnψ � Eφ}

• If |Ψ1| = 1, then the single element in this set is surely φ.

• Else Re-employ previous strategy for PRGA rounds 2l , 3l , . . .
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Optimizations on l

• If l ≤ 44, the scheme trivially fails.

◦ Sgn40 � Sgn79 → if φ = 79 conclusive identification impossible.

• If l > 44, the scheme works.
◦ Sgni1 � Sgni2 ∀i1, i2 ∈ [0, 79]

• Smaller value of l implies more faults for identification.

• Computer simulations over 220 random Key-IV pairs : l = 80 is
optimal.
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Average no of faults vs l
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Figure: Average number of faults vs Length of Signature.
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Beginning the Attack
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More Notations

• St = [x t
0, x

t
1, . . . , x

t
79 y t

0 , y
t
1 , . . . , y

t
79] state at round t of the PRGA.

x t
i (y t

i )→ i th NFSR (LFSR) bit at tth round of the PRGA.

• When t = 0, S0 = [x0, x1, . . . , x79 y0, y1, . . . , y79] for convenience.

• Sφt (t1, t2) state round t of the PRGA, when a fault at LFSR
location φ at t = t1, t2.

• zφt (t1, t2) tth faulty keystream bit, when a fault at LFSR location φ
at t = t1, t2.

• zt is the fault-free tth keystream bit.
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Affine Differential Resistance

Definition
Consider a q-variable Boolean function F . A non-zero vector
α ∈ {0, 1}q is said to be an affine differential of the function F if
F (x) + F (x + α) is an affine function. A Boolean function is said to
be affine differential resistant if it does not have any affine differential.

In Grain v1

h(s0, s1, s2, s3, s4) + h(1 + s0, 1 + s1, s2, s3, 1 + s4) = s2

Therefore h is not affine differential resistant.
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Fault attack on Grain v1: Getting the LFSR

Lemma
Fault in LFSR location 38 + r ∀r ∈ [0, 41], at rounds λ and λ+ 20 for λ = 0, 1, . . .

⇒ In Round t = 55 + λ+ r , S38+r
55+λ+r (λ, λ+ 20)⊕ S55+λ+r = [y3, y25, x63]55+λ+r

No difference in other 9 locations that contributes to the output keystream bit.

Therefore zt + zφt (λ, λ+ 20) = y t
46 where t = 55 + λ+ r

⇒ y t
46 is a linear function in [y0, y1, . . . , y79] i.e. the LFSR bits of S0.

⇒ Gives one linear equation in initial LFSR bits.

⇒ Use this to get 80 linearly independent equations and solve to get
all LFSR bits of S0.
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Fault attack on Grain v1: LFSR recovery

Figure: LFSR recovery
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Fault attack on Grain v1: Getting the NFSR

In Grain v1 we have

h = s4 · u(s0, s1, s2, s3) + v(s0, s1, s2, s3)

u(s0, s1, s2, s3) + u(s0, 1 + s1, s2, 1 + s3) = 1

Lemma
Fault in LFSR location φ at 0, 20 PRGA rounds, then at round t

St + Sφ
t (0, 20) = [y25, y64]t

(i) φ = 51 + r , t = 91 + r for 0 ≤ r ≤ 28,
(ii) φ = 62 + r , t = 55 + r for 0 ≤ r ≤ 17,
(iii) φ = 62 + r , t = 75 + r for 0 ≤ r ≤ 15.

⇒ zt + zφ
t (0, 20) = x t

63 +v([y3, y25, y46, y64]t ) + v([y3, 1 + y25, y46, 1 + y64]t )
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Fault attack on Grain v1: NFSR recovery
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Getting the NFSR

• Using above technique 63 NFSR bits of S103 are recovered.

• LFSR bits of S103 already known(during PRGA LFSR evolution is
autonomous).

• Not recovered ⇒ [x0, x1, . . . , x14, x33, x34]103

• Solve the following equations to find the remaining bits

z102+γ = x103
0+γ + x103

1+γ + x103
3+γ + x103

9+γ + x103
30+γ + x103

42+γ + x103
55+γ + u102+γx103

62+γ + v102+γ

for γ = 0, 1, . . . , 14.

Given ui = u(y i
3, y

i
25, y

i
46, y

i
64) and vi = v(y i

3, y
i
25, y

i
46, y

i
64).

• KSA and PRGA operations are easily invertible in Grain.

S103
PRGA−1

→ 103 times S0
KSA−1

→ SecretKey
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Countermeasure

F (s0, s1, s2, s3, s4) = s0s1 + s1s2 + s2s3 + s3s4 + s4s0 + s0s2 + s1s3 +
s2s4 + s3s0 + s4s1 + s0s1s3 + s1s2s4 + s2s3s0 + s3s4s1 + s4s0s2.

• F is affine differential resistant.

• F is a (5, 3, 1, 12) function ⇒ same as h.

• A realization of F in hardware takes just 8 more gates than h.
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Discussion

• Fault attack was possible because h is not affine differential
resistant.

• However, the assumptions in the attack are quite strong.

• Can Grain be fault-attacked under relaxed assumptions?
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DFA on Grain with relaxed assumptions

• We assume that fault can be reproduced at a single location
multiple number of times: optimistic and expensive.

• We have performed a differential fault attack on the Grain family
by relaxing this assumption.

• No longer necessary to fault any location more than once.

• For more please visit INDOCRYPT 2012.
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Another Follow up work on Grain-128a

• Grain-128a was proposed in SKEW 2011 by Ågren et. al.

• Outputs 32 bit MAC of any message and encrypts it as well.

• Using the same idea and by querying the device for faulty MACs of
the empty message: Secret Key can be recovered.

• To be presented at SPACE 2012.
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THANK YOU
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