

THRESHOLD IMPLEMENTATIONS OF ALL 3x3 AND 4x4 S-BOXES

B.Bilgin, S.Nikova, V.Nikov, V.Rijmen, G.Stütz KU Leuven, UTwente, NXP, TU Graz

Introduction

Countermeasures

Search for a countermeasure against DPA

Search for a countermeasure against DPA

- Hardware countermeasures
 - Balancing power consumption [Tiri et al., CHES'03]
- Masking

Introduction

- Masking intermediate values [Chari et al., CRYPTO'99; Goubin et al., CHES'99]
- Threshold Implementations [Nikova et al., ICISC'08]
- Shamir's Secret Sharing [Goubin et al., CHES'11; Prouff et al., CHES'11]

Countermeasures

Search for a countermeasure against DPA

- Hardware countermeasures
 - Balancing power consumption [Tiri et al., CHES'03]
 - ...
- Masking
 - Masking intermediate values [Chari et al., CRYPTO'99; Goubin et al., CHES'99]
 - Threshold Implementations [Nikova et al., ICISC'08]
 - Shamir's Secret Sharing [Goubin et al., CHES'11; Prouff et al., CHES'11]
 - ...

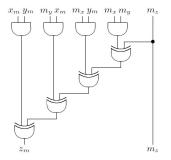
Issues: Unfeasible circuit size, glitches

Glitches

Introduction

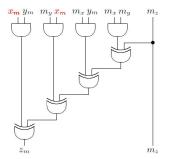
$$z = x \ AND \ y$$
 , where $x_m = x \oplus m_x, y_m = y \oplus m_y$

$$z = x \ AND \ y$$
, where $x_m = x \oplus m_x, y_m = y \oplus m_y$
 $z_m = x_m y_m \oplus (m_y x_m \oplus (m_x y_m \oplus (m_x m_y \oplus m_z)))$



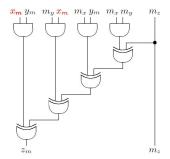
Glitches

$$z = x \ AND \ y$$
, where $x_m = x \oplus m_x, y_m = y \oplus m_y$
 $z_m = x_m y_m \oplus (m_y x_m \oplus (m_x y_m \oplus (m_x m_y \oplus m_z)))$



Glitches

$$z = x \ AND \ y$$
, where $x_m = x \oplus m_x, y_m = y \oplus m_y$
 $z_m = x_m y_m \oplus (m_y x_m \oplus (m_x y_m \oplus (m_x m_y \oplus m_z)))$



у	m_y	Уm	AND	XOR
0	0	0	0	0
0	1	1	2	2
1	0	1	1	1
1	1	0	1	2

Threshold Implementations

Threshold Implementations

- Any hardware technology
- Realistic size

Introduction

Provably secure against 1st order DPA

Threshold Implementations

Threshold Implementations

- Any hardware technology
- Realistic size
- Provably secure against 1st order DPA

So far,

Introduction

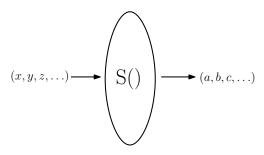
- Noekeon [Nikova et al., ICISC'08]
- Present [Poschmann et al., J.Cryptology'11]
- AES [Moradi et al., Eurocrypt'11]

In this paper,

- TI of all 3×3 and 4×4 S-boxes
 - The non-linear part of a cipher
 - Common S-box size for lightweight crypto

In this paper,

- TI of all 3×3 and 4×4 S-boxes
 - The non-linear part of a cipher
 - Common S-box size for lightweight crypto
- Cost of a TI



$$(x_1, y_1, z_1, \dots)$$

$$(x_2, y_2, z_2, \dots)$$

$$\vdots$$

$$\vdots$$

$$(x_s, y_s, z_s, \dots)$$

$$S_1$$

$$(a_1, b_1, c_1, \dots)$$

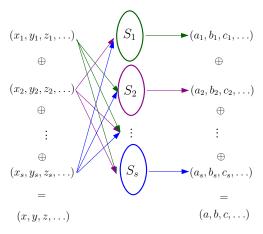
$$(a_2, b_2, c_2, \dots)$$

$$\vdots$$

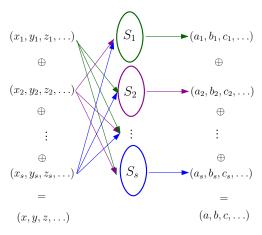
$$\vdots$$

$$(a_s, b_s, c_s, \dots)$$

Correct



- Correct
- Non-complete



- Correct
- Non-complete
- Uniform

Definition

 $S_1(x)$ and $S_2(x)$ are affine equivalent if \exists invertible affine permutations A(x) and B(x) s.t $S_1 = B \circ S_2 \circ A$

Theorem

If S_2 can be shared properly, then every S_1 that belongs to the same class with S_2 can be shared since $S_1 = B \circ S_2 \circ A$

Theorem

If S_2 can be shared properly, then every S_1 that belongs to the same class with S_2 can be shared since $S_1 = B \circ S_2 \circ A$

	3×3 S-boxes	4×4 S-boxes
Affine (A_i)	1	1
Quadratic (Q_i)	3	6
Cubic (C_i)	-	295

Theorem

If S_2 can be shared properly, then every S_1 that belongs to the same class with S_2 can be shared since $S_1 = B \circ S_2 \circ A$

	3×3 S-boxes	4×4 S-boxes
Affine (A_i)	1	1
Quadratic (Q_i)	3	6
Cubic (C_i)	-	295

Reduce the workspace

Theorem

If S_2 can be shared properly, then every S_1 that belongs to the same class with S_2 can be shared since $S_1 = B \circ S_2 \circ A$

	3×3 S-boxes	4×4 S-boxes
Affine (A_i)	1	1
Quadratic (Q_i)	3	6
Cubic (C_i)	-	295

Reduce the workspace

A function with degree d can be shared with at least d+1 shares

HW implementations

Direct Sharing

$$S(x, y, z) = x + yz$$

$$S_1 = x_2 + y_2 z_2 + y_2 z_3 + y_3 z_2$$

$$S_2 = x_3 + y_3 z_3 + y_3 z_1 + y_1 z_3$$

$$S_3 = x_1 + y_1 z_1 + y_1 z_2 + y_2 z_1$$

$$S(x, y, z) = x + yz$$

$$S_1 = x_2 + y_2 z_2 + y_2 z_3 + y_3 z_2$$

$$S_2 = x_3 + y_3 z_3 + y_3 z_1 + y_1 z_3$$

$$S_3 = x_1 + y_1 z_1 + y_1 z_2 + y_2 z_1$$

	3×3 S-boxes	4×4 S-boxes
Affine	A_0	A_0
Quadratic	Q_1, Q_2, Q_3	Q_4 , Q_{12} , Q_{293} , Q_{294} , Q_{299} , Q_{300}

$$S(x,y,z) = x + yz$$

$$S_{1} = \cancel{y_{2}} + y_{2}z_{2} + y_{2}z_{3} + y_{3}z_{2} + \cancel{y_{2}} + x_{3}$$

$$S_{2} = \cancel{y_{3}} + y_{3}z_{3} + y_{3}z_{1} + y_{1}z_{3} + \cancel{y_{3}} + x_{1}$$

$$S_{3} = \cancel{y_{1}} + y_{1}z_{1} + y_{1}z_{2} + y_{2}z_{1} + \cancel{y_{1}} + x_{2}$$

	3×3 S-boxes	4 × 4 S-boxes
Affine	A_0	A_0
Quadratic	$Q_1, \ Q_2, \ Q_3$	Q_4 , Q_{12} , Q_{293} , Q_{294} , Q_{299} , Q_{300}

$$S(x, y, z) = x + yz$$

$$S_{1} = \cancel{y_{2}} + y_{2}z_{2} + y_{2}z_{3} + y_{3}z_{2} + \cancel{y_{2}} + x_{3}$$

$$S_{2} = \cancel{y_{3}} + y_{3}z_{3} + y_{3}z_{1} + y_{1}z_{3} + \cancel{y_{3}} + x_{1}$$

$$S_{3} = \cancel{y_{1}} + y_{1}z_{1} + y_{1}z_{2} + y_{2}z_{1} + \cancel{y_{1}} + x_{2}$$

	3×3 S-boxes	4×4 S-boxes
Affine	A_0	A_0
Quadratic	$Q_1, \ Q_2, \ Q_3$	Q_4 , Q_{12} , Q_{293} , Q_{294} , Q_{299} , Q_{300}

Work for *n* shares with *m* variables is $2^{3(m+\binom{m}{2})n}$ 3x3 S-box with 3 shares $2^{18\times3}=2^{54}$

$$S(x, y, z) = x + yz$$

$$S_{1} = \cancel{y_{2}} + y_{2}z_{2} + y_{2}z_{3} + y_{3}z_{2} + \cancel{y_{2}} + x_{3}$$

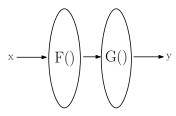
$$S_{2} = \cancel{y_{3}} + y_{3}z_{3} + y_{3}z_{1} + y_{1}z_{3} + \cancel{y_{3}} + x_{1}$$

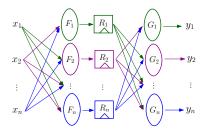
$$S_{3} = \cancel{y_{1}} + y_{1}z_{1} + y_{1}z_{2} + y_{2}z_{1} + \cancel{y_{1}} + x_{2}$$

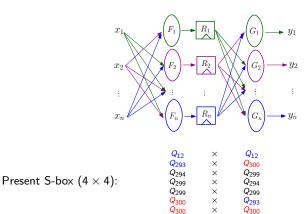
	3×3 S-boxes	4 × 4 S-boxes
Affine	A_0	A_0
Quadratic	$Q_1, \ Q_2, \ Q_3$	Q_4 , Q_{12} , Q_{293} , Q_{294} , Q_{299} , Q_{300}

Work for *n* shares with *m* variables is $2^{3(m+\binom{m}{2})n}$ 3x3 S-box with 3 shares $2^{18\times3} = 2^{54}$

How to share Q_3 or Q_{300} in one step







We can share

• All quadratic S-boxes with 3 shares

We can share

- All quadratic S-boxes with 3 shares
- Almost half of the cubic S-boxes with 3 shares with at most 4 decomposition layers

We can share

- All quadratic S-boxes with 3 shares
- Almost half of the cubic S-boxes with 3 shares with at most 4 decomposition layers
- All S-boxes with 4 shares with at most 3 decomposition layers

We can share

- All quadratic S-boxes with 3 shares
- Almost half of the cubic S-boxes with 3 shares with at most 4 decomposition layers
- All S-boxes with 4 shares with at most 3 decomposition layers
- All S-boxes with 5 shares without decomposition

Mathematical Reasoning for Decomposition

Lemma I:

For all n > 2, $n \times n$ affine bijections are in A_{2^n}

Lemma II:

All 4 \times 4 quadratic S-boxes are in A_{16}

Mathematical Reasoning for Decomposition

Lemma I:

For all n > 2, $n \times n$ affine bijections are in A_{2^n}

Lemma II.

All 4 \times 4 quadratic S-boxes are in A_{16}

Theorem

A 4 \times 4 bijection can be decomposed using quadratic bijections iff it belongs to A_{16} .

$$S_{i\times j}=Q_i\circ A\circ Q_j$$

Overview of Classes

Overview of # of classes w.r.t # of shares and layers of decomposition

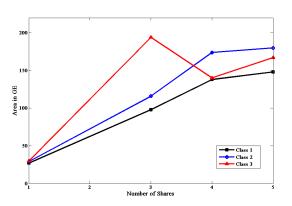
	unshared			3 shares				4 shares			5 shares
# of layers	1	2	3	1	2	3	4	1	2	3	1
quadratic	6			5	1			6			6
cubics in A_{16}		30			28	2			30		30
cubics in A_{16}			114			113	1			114	114
cubics in $S_{16} \setminus A_{16}$		-				-		4	22	125	151

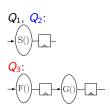
Overview of Classes

Overview of # of classes w.r.t # of shares and layers of decomposition

	unshared			3 shares				4 shares			5 shares
# of layers	1	2	3	1	2	3	4	1	2	3	1
quadratic	6			5	1			6			6
cubics in A_{16}		30			28	2			30		30
cubics in A_{16}			114			113	1			114	114
cubics in $S_{16} \setminus A_{16}$		-				-		4	22	125	151

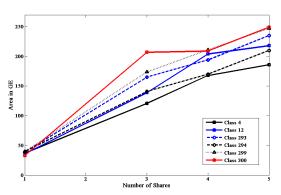
Quadratic 3×3 S-boxes





TSMC $0.18\mu m$ standard cell library

Quadratic 4 × 4 S-boxes



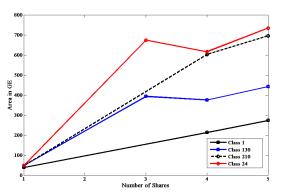
F()

 Q_{299} :

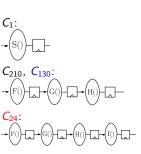
 Q_4 , Q_{12} , Q_{293} , Q_{294} ,

TSMC $0.18\mu m$ standard cell library

Cubic 4 × 4 S-boxes



TSMC $0.18\mu m$ standard cell library



Conclusion

• TI is extended to all 3×3 , 4×4 and DES S-boxes

Conclusion

- TI is extended to all 3×3 , 4×4 and DES S-boxes
- Number of decomposition layers necessary

Conclusion

- TI is extended to all 3×3 , 4×4 and DES S-boxes
- Number of decomposition layers necessary
- Less number of shares does NOT always imply smaller area

- TI is extended to all 3×3 , 4×4 and DES S-boxes
- Number of decomposition layers necessary
- Less number of shares does NOT always imply smaller area
- TI can also be efficient

Thank you!

