

Practical security analysis of PUF-based two-player protocols

CHES, September 11, 2012

Ulrich Rührmair (1), Marten van Dijk (2)

- (1) Technische Universität München, Germany
 - (2) RSA Laboratories, Cambridge, MA, USA

1. Background: PUFs and Oblivious Transfer

- 2. Attack on a Recent PUF-based Oblivious Transfer Protocol (CRYPTO'11)
- 3. Practical Effect of the Attack
- 4. Countermeasures?
- 5. Summary

Physical Unclonable Functions (PUFs)

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

(R_i is a function of the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

- "Zoo" of PUFs ⁽¹⁾: Physically Obfuscated Keys, Weak PUFs, Controlled PUFs, Physical Random Functions, Strong PUFs, Public PUFs, SIMPL Systems, etc.
- This work: Strong PUFs (and their use in fundamental cryptographic protocols)

(1) U. Rührmair, S. Devadas, F. Koushanfar: *Security based on Physical Unclonability and Disorder*. In M. Tehranipoor and C. Wang (Editors): Introduction to Hardware Security and Trust. Springer, 2011.

Physical Unclonable Functions (PUFs)

PUF

(= (partly) disordered, unclonable physical system S)

External Stimuli/ Challenges C_i

Responses R_i

(R_i is a function of the applied challenge C_i and the specific disorder in S)

(C_i, R_i): Challengeresponse pairs (CRPs) of the PUF

Security features of Strong PUFs:

- Challenge-response interface is publicly accessible
 - Everyone who holds physical possession of the Strong PUF can freely apply challenges and read out responses
- Very many possible challenges (ideally exponentially many)
- No model building/numerical prediction of unknown responses

Two Examples of Strong PUFs

Optical PUF

R. Pappu et al, Science 2002

B. Gassend et al, E. Suh et al 2003/2007

Strong PUFs in Cryptographic Protocols

Idea:

- Due to the security features of Strong PUFs:
 Only the party currently in possession of the PUF can determine CRPs.
- Which cryptographic protocols can we build on this simple fact?

Oblivious Transfer (OT)

- Two-party protocol with the following functionality:
 - Beginning of Protocol: Sender holds two strings s_0 and s_1 , and Receiver holds a choice bit b.
 - End of Protocol: Receiver has learned the string s_b , i.e. the string that he selected by his choice bit b.

- Security requirements:
 - If Sender follows protocol, **Receiver cannot** learn **both** s_0 and s_1 .
 - If Receiver follows protocol, Sender cannot learn choice bit b.

Motivation for Studying OT with PUFs

- OT is a fundamental, very powerful cryptographic tool
 - A large number of cryptographic tasks can be reduced to OT:
 Bit commitment, zero-knowledge proofs, key exchange,
 any secure two-party computation [Kilian, STOC 1988]
- Usually, the (im)possibility of OT is studied in order to illustrate the potential of a new cryptographic model
 - Bounded storage model (yes ✓)
 - Quantum crypto (no X)
 - Noise-based crypto (yes ✓)
 - PUFs (yes ✓) [Rührmair, TRUST 2010; Brzuska, Fischlin, Schröder, Katzenbeisser, CRYPTO 2011]

[TRUST '10] U. Rührmair, Oblivious Transfer based on Physical Unclonable Functions. TRUST 2010.

[CRYPTO '11] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser: *Physical Unclonable Functions in the Universal Composition Framework*. CRYPTO 2011.

- 1. Background: PUFs and Oblivious Transfer
- 2. Attack on a Recent PUF-based Oblivious Transfer Protocol (CRYPTO'11)
- 3. Practical Effect of the Attack
- 4. Countermeasures?
- 5. Summary

OT-Protocol from CRYPTO'11 (slightly simplified)

RECEIVER (b)

Chooses random c, measures CRP (c, r)

Sets $v := c \oplus x_b$

Computes $S_b \oplus r = S_b \oplus r_b = S_b$

$$S_0 := s_0 \oplus r_0$$
 , $S_1 := s_1 \oplus r_1$

SENDER (s_0, s_1)

Chooses random x_0 , x_1

Measures the CRPs $(v \oplus x_0, r_0)$, $(v \oplus x_1, r_1)$

(Depending on b, either $v \oplus x_0 = c$ or $v \oplus x_1 = c$. Hence $\mathbf{r_b} = \mathbf{r}$.)

The Attack

WLOG we assume that PUF has challenge space $C = \{0,1\}^{2n}$

RECEIVER (b)

Chooses random c,

Finds $c_0^* \in A^*$, $c_1^* \in B^*$

s.th. $\mathbf{c_0}^* \oplus \mathbf{c_1}^* = \mathbf{x_0} \oplus \mathbf{x_1}$.

Read out CRPs whose challenges are in set $M^* = A^* \cup B^*$, with

$$A^* = \{ 0^n | | x : x \in \{0,1\}^n \},$$

 $B^* = \{ x | | 0^n : x \in \{0,1\}^n \}.$
Then $\#M^* = 2^{n+1} << 2^{2n}$

measures CRP (c, r) Sends

$$\mathbf{x}_0$$
, \mathbf{x}_1

$$\mathbf{v} := \mathbf{c_0}^* \oplus \mathbf{x_0}$$

$$S_0 := S_0 \oplus r_0$$
, $S_1 := S_1 \oplus r_1$

SENDER (s_0, s_1)

Chooses random x_0 , x_1

Measures the CRPs $(\mathbf{v} \oplus \mathbf{x}_0, \mathbf{r}_0), (\mathbf{v} \oplus \mathbf{x}_1, \mathbf{r}_1)$ = $(\mathbf{c_0}^*, \mathbf{r_0}), (\mathbf{c_1}^*, \mathbf{r_1})$ (known to RECEIVER)

Obtains $\mathbf{s_0} = \mathbf{S_0} \oplus \mathbf{r_0}$ and $\mathbf{s_1} = \mathbf{S_1} \oplus \mathbf{r_1}$

Sets $\mathbf{v} := \mathbf{c_0}^* \oplus \mathbf{x_0}$

- 1. Background: PUFs and Oblivious Transfer
- 2. Attack on a Recent PUF-based Oblivious Transfer Protocol (CRYPTO'11)
- 3. Practical Effect of the Attack
- 4. Countermeasures?
- 5. Summary

Practical Effect of our Attack

- Are quadratic attacks relevant at all?
 - Example RSA: Not very relevant
 - Example SHA-1, single-round DES: Highly relevant!
- We argue that PUFs are closer to SHA-1 or single-round DES
 - Reason: PUFs are finite physical systems;
 cannot be scaled indefinitely due to size, cost and stability issues
- Two examples:
 - Crypto'11 protocols + Optical PUFs
 (suggested explicitly in extended version of CRYPTO'11)
 - Crypto'11 protocols + electrical XOR Arbiter PUFs of bitlength 64 (currently most popular electrical Strong PUFs)

- XOR Arbiter PUF with challenge length 64 bits
 - 2⁶⁴ challenges
- Reduced to $2^{33} = 8.58 \times 10^{9}$ challenges by our attack, which malicious party must read out in order to cheat.
- This takes 144 min (at read-out rate of 1 MHz [1])

^[1] Lee, J.-W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: *A technique to build a secret key in integrated circuits with identification and authentication applications*. In: Proceedings of the IEEE VLSI Circuits Symposium (June 2004)

- Pappu et al [Science2002]: Optical PUF of size 1 cm × 1 cm possesses 2.37 × 10¹⁰ independent, decorrelated CRPs
- Reduced to 5.2×10^5 CRPs by our attack, which malicious party must read out in order to cheat
- This takes: 14.4 hours (read-out rate of 10 CRPs/sec)
 87 minutes (read-out rate of 100 CRPs/sec)
- If you want to increase these read-out times by a factor of 10, then you must use an optical PUF of size 10 cm × 10 cm
 - Does not even fit onto a smart card!

- 1. Background: PUFs and Oblivious Transfer
- 2. Attack on a PUF-based Oblivious Transfer Protocol (CRYPTO'11)
- 3. Practical Effect of the Attack
- 4. Countermeasures?
- 5. Summary

Countermeasures

- Use OT-protocol from TRUST'10 (with interactive hashing step)
 - Better security, can be used safely with optical PUFs and 64-bit electrical PUFs
 - But leads to increased round complexity
 - Future work: interactive hashing variants with constant rounds [1]
- Probably: Use CRYPTO'11 protocols with electrical PUFs with longer bitlength, e.g. 128 bits
 - Still needs to be fully confirmed in future work;
 requires security properties of the PUF that go beyond the usual unpredictability feature

^[1] Marten van Dijk, Ulrich Rührmair: *Physical Unclonable Functions in Cryptographic Protocols: Security Proofs and Impossibility Results.* Cryptology ePrint Archive, 2012.

- 1. Introduction: PUFs and Cryptographic Protocols
- 2. Quadratic Attack on a PUF-based Oblivious Transfer Protocol (CRYPTO'11)
- 3. Practical Effect of the Attack
- 4. Countermeasures?

5. Summary

Summary

- Discussed work concerning the use of PUFs in fundamental cryptographic protocols
 - Relatively recent, emerging branch
- Devised quadratic attacks on recent OT- (and BC-) protocols from CRYPTO'11
- Attacks make protocols insecure when they are employed with optical PUFs, or with Arbiter PUFs of challenge length 64 bits
 - Special relevance of these two implementations
- Briefly discussed countermeasures
 - Use interactive hashing and OT-protocols from TRUST'10 (✓)
 - Electrical PUFs with longer challenge bit length (?)

Thanks!