
Seiichi Matsuda (Sony Corporation)
Shiho Moriai (NICT)	

•  Motivation
o  Lightweight Cryptography in Cyber Physical Systems

•  Bitslice Implementations
o  PRESENT
o  Piccolo

•  Performance Evaluation
•  Conclusion

2	

•  Attracting attention in cryptography
research area
o  Block ciphers, Stream ciphers,

Hash functions, MAC, etc.

•  Lightweight block ciphers are
standardized in ISO/IEC 29192-2
o  PRESENT(64-bit) and CLEFIA(128-bit)

•  Designed for constrained devices
o  Mostly optimized for H/W implementation

•  Gate area, power and energy consumption

o  S/W performance evaluated on low-end platforms
•  Low memory requirements and small code size

3	

4	

Sensor networks	

Cloud	

PC, Servers	

Big data processing
in a cloud

environment

Data collection
 in sensing
networks

Fast decryption in
software	

Encryption in low-
cost hardware using

lightweight
cryptography	

•  Most lightweight block ciphers do not show good
throughput in software on high-end platforms
o  No use cases identified
o  Low priority in design criteria

•  Bitslice implementation (Biham, 1997)
o  Simulates H/W implementation in S/W program
o  Uses logical instructions corresponding to H/W logical gates

•  Expected to improve S/W performance of small ciphers
o  Resistant to cache timing attacks

•  Also prevents cross-VM attacks in multi-tenant cloud

5	

Bitslice
Encryption	

K	

1st bit	

2nd bit	

64th bit	

x1	

x2	

x64	

1st bit	

2nd bit	

64th bit	

y1	

y2	

y64	

yi = fi(x1, x2, …, x64, K)	

Plaintext Blocks
Bitsliced representation	

Ciphertext Blocks
Bitsliced representation	

•  Most lightweight block ciphers do not show good
throughput in software on high-end platforms
o  No use cases identified
o  Low priority in design criteria

•  Bitslice implementation (Biham, 1997)
o  Simulates H/W implementation in S/W program
o  Uses logical instructions corresponding to H/W logical gates

•  Expected to improve S/W performance of small ciphers
o  Resistant to cache timing attacks

•  Also prevents cross-VM attacks in multi-tenant cloud

6	

Our aim
To explore S/W performance of lightweight block ciphers

using bitslice implementation

•  64-bit lightweight block ciphers
o  PRESENT (Bogdanov et al, CHES2007)

•  Standardized in ISO/IEC 29192-2
•  Substitution-Permutation Network (SPN)

o  Piccolo (Shibutani et al, CHES2011)
•  Generalized Feistel Networks (GFN)

•  Our Implementation approach
o  Reduce the degree of parallelism of bitslice implementation

for performance and more applications
•  PRESENT 8, 16 and 32 parallel
•  Piccolo 16 parallel

7	

•  Intel microarchitectures (w/ SIMD instructions)
o  Core (45nm) and Nehalem (SSSE3 and SSE4)

•  16 128-bit XMM registers
•  Shuffle and unpack instructions

o  Sandy Bridge (AVX)
•  128-bit XMM registers are extended to 256-bit YMM registers
•  Not fully supports for integer instructions on YMM registers
•  3-operand syntax

o  SSE: pxor xmm1, xmm2 (xmm1 ^= xmm2)
o  AVX: vpxor xmm1, xmm2, xmm3 (xmm1 = xmm2 ^ xmm3)

•  In our implementation
o  Using 128-bit AVX working on XMM registers (3-operand syntax)

8	

2007	
 2008	
 2009	
 2010	
 2011	
 2012	

Nehalem Sandy Bridge	
 Core	

Time	

32 nm	
 45 nm	
 65 nm	

9	

10	

Plaintext (64-bit*N)	

sBoxLayer	

pLayer	

Data Conversion	

addRoundKey	

Bitsliced Round keys
 on memory	

Data Conversion	

Ciphertext (64-bit*N)	

N = 8, 16, 32	

31 rounds
 for 80/128-bit key

sBoxLayer	

pLayer	

…	

…	

•  2 bitsliced representations (1st/2nd)
o  To skip pLayer every other round

•  pLayer for 1st bitslice rep.
o  Conversion from 1st to 2nd rep.
o  Register renaming (No cost)

•  pLayer for 2nd bitslice rep.
o  Conversion from 2nd to 1st rep.
o  Uses shuffle and unpack instructions

•  52 instructions with SSE
•  36 instructions with 128-bit AVX

11	

SboxLayer	

SboxLayer	

pLayer	

SboxLayer	

K2	

K3	

Plaintext (64-bit*32)	

Data Conversion	

K1	

1st	

2nd	

1st	

pLayer	

pLayer	

…	

12	
 128-bit XMM registers	

n0,0	
 n4,0	
 n8,0	
 n12,0	

16bits	

32

 b
lo

ck
s	

32 bits	

n0,1	
 n4,1	
 n8,1	
 n12,1	

n0,2	
 n4,2	
 n8,2	
 n12,2	

n0,3	
 n4,3	
 n8,3	
 n12,3	

n3,0	
 n7,0	
 n11,0	
 n15,0	

n3,1	
 n7,1	
 n11,1	
 n15,1	

n3,2	
 n7,2	
 n11,2	
 n15,2	

n3,3	
 n7,3	
 n11,3	
 n15,3	

...
	

16
 re

gi
st

er
s	

64-bit plaintext	

...
	

r[0]	

r[1]	

r[2]	

r[3]	

r[12]	

r[13]	

r[14]	

r[15]	

13	
 128-bit XMM registers	

n0,0	
 n1,0	
 n2,0	
 n3,0	

4bits	

32

 b
lo

ck
s	

32 bits	

n0,1	
 n1,1	
 n2,1	
 n3,1	

n0,2	
 n1,2	
 n2,2	
 n3,2	

n0,3	
 n1,3	
 n2,3	
 n3,3	

n12,0	
 n13,0	
 n14,0	
 n15,0	

n12,1	
 n13,1	
 n14,1	
 n15,1	

n12,2	
 n13,2	
 n14,2	
 n15,2	

n12,3	
 n13,3	
 n14,3	
 n15,3	

...
	

16
 re

gi
st

er
s	

64-bit plaintext/ciphertext 	

...
	

r[0]	

r[1]	

r[2]	

r[3]	

r[12]	

r[13]	

r[14]	

r[15]	

S S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	

S S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	
 S	

14	

n0,0	
 n4,0	
 n8,0	
 n12,0	

n0,1	
 n4,1	
 n8,1	
 n12,1	

n0,2	
 n4,2	
 n8,2	
 n12,2	

n0,3	
 n4,3	
 n8,3	
 n12,3	

r[0]	

r[1]	

r[2]	

r[3]	

n0,0	
 n1,0	
 n2,0	
 n3,0	

n4,0	
 n5,0	
 n6,0	
 n7,0	

n8,0	
 n9,0	
 n10,0	
 n11,0	

n12,0	
 n13,0	
 n14,0	
 n15,0	

r[0]	

r[1]	

r[2]	

r[3]	

1st Bitslice Representation	

2nd Bitslice Representation	

•  Using logical representation equivalent to 4-bit S-box
o  14 instructions (Courtois et al, 2011)

•  Assuming 3-operand syntax with 8 registers
•  Used in 8/16-block parallel implementations with 128-bit AVX

o  20 instructions (Our result based on Osvik’s method)
•  Assuming 2-operand syntax with 5 registers
•  Used in the other implementations
•  Reduced to17 with 128-bit AVX

15	

16	

17	

Plaintext (64-bit*16)	

Data Conversion	

Data Conversion	

Ciphertext (64-bit*16)	

25 (31) rounds for
　	
 	
 	
 80-bit (128-bit)
key

Bitsliced Round key
 on memory	

F	
 F	

F	
 F	

rk1	
 rk0	

RP	

RP	

wk0	
 wk1	

wk2	
 wk3	

rk2r-1	
 rk2r-2	

…	

…	

18	

4 bits	
 64-bit plaintext/ciphertext 	

n4,0	
 n5,0	
 n6,0	
 n7,0	
 n12,0	
 n13,0	
 n14,0	
 n15,0	

n4,1	
 n5,1	
 n6,1	
 n7,1	
 n12,1	
 n13,1	
 n14,1	
 n15,1	

n4,2	
 n5,2	
 n6,2	
 n7,2	
 n12,2	
 n13,2	
 n14,2	
 n15,2	

n4,3	
 n5,3	
 n6,3	
 n7,3	
 n12,3	
 n13,3	
 n14,3	
 n15,3	

n0,1	
 n1,1	
 n2,1	
 n3,1	
 n8,1	
 n9,1	
 n10,1	
 n11,1	

n0,2	
 n1,2	
 n2,2	
 n3,2	
 n8,2	
 n9,2	
 n10,2	
 n11,2	

n0,3	
 n1,3	
 n2,3	
 n3,3	
 n8,3	
 n9,3	
 n10,3	
 n11,3	

 128-bit XMM registers	

n0,0	
 n1,0	
 n2,0	
 n3,0	
 n8,0	
 n9,0	
 n10,0	
 n11,0	

16
 b

lo
ck

s	

16 bits	

...
	

...
	

8
re

gi
st

er
s	

r[0]	

r[1]	

r[2]	

r[3]	

r[4]	

r[5]	

r[6]	

r[7]	

•  Diffusion Matrix M
o  25 instructions (using 8 reg.)	

•  Based on Käsper’s impl. (CHES2009)

o  2 matrices can be computed at once
•  Rotation by 16-bit using pshufb

•  4-bit S-box S

o  13 instructions (using 5 reg.)
•  Same approach as PRESENT S-box
•  Reduced to 11 with 128-bit AVX	

19	

S	

S	

S	

S	

M	

S	

S	

S	

S	

16	
 16	

n8,0	
 n9,0	
 n10,0	
 n11,0	
 n0,0	
 n1,0	
 n2,0	
 n3,0	

n9,0	
 n10,0	
 n11,0	
 n8,0	
 n1,0	
 n2,0	
 n3,0	
 n0,0	

•  Standard implementation
o  8 instructions applying pshufb

20	

x0	
 x1	
 x2	
 x3	
 x4	
 x5	
 x6	
 x7	

x2	
 x7	
 x4	
 x1	
 x6	
 x3	
 x0	
 x5	

64	

F	
 F	

F	
 F	

F	
 F	

RP	

RP	

RP	

RP	

RP	

F	
 F	

•  Remove RP
o  Saves 200 instructions for 80-bit key
o  Need to modify F-functions

•  F-functions F’ on 2nd, 4th round
o  Same S-box calculation
o  New matrix rep.

•  No penalty with SSE
•  4 more inst. with AVX

•  No effect on 3rd round
o  Need to align round keys

21	

F	
 F	

F’	
 F’	

F	
 F	

F’	
 F’	

22	

PRESENT-80/128
32-block parallel	

SSE 128-bit AVX	

addRoundKey	
 512	
 512	

sBoxLayer	
 2604	
 2232	

pLayer	
 780	
 540	

Conversion	
 550	
 468	

Total	
 4446	
 3752	

23	

Piccolo -80
16-block parallel	

SSE	
 128-bit AVX	

Diffusion matrix	
 625	
 573	

S-box	
 650	
 550	

addRK/WK	
 308	
 208	

Conversion	
 232	
 200	

Total	
 1815	
 1531

24	

cf. AES-CTR (8-block parallel) 6.92 cycles/byte @ Core i7 920 (Nehalem)
 [Käsper et al. CHES2009]

•  Can lightweight block ciphers with smaller gate size
achieve better S/W performance by bitslicing ?
o  Relationship is not trivial and depends on several factors

•  Algorithm of target cipher
•  Implementation approach
•  Target platform

o  Results of other lightweight block ciphers
(Non-bitslice implementation)
•  LED-64 (Guo et al., CHES 2011)

o  57 cycles/byte on Core i7 Q720

•  TWINE (Suzaki et al., SAC 2012)
o  4.77 cycles/byte on Core i5 U560

25	

•  We showed great potential of lightweight cryptography
in fast S/W implementation on high-end platforms by
exploiting bitslice implementation
o  On Sandy Bridge:

•  PRESENT-80/128 4.73 cycles/byte
•  Piccolo-80 4.57 cycles/byte

o  On Nehalem: Faster results than the S/W record of AES

•  Lightweight cryptography is not limited to constrained
devices. Open the way to cloud computing!

26	

