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•  Motivation 
o  Lightweight Cryptography in Cyber Physical Systems  

•  Bitslice Implementations 
o  PRESENT 
o  Piccolo 

•  Performance Evaluation 
•  Conclusion 
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•  Attracting attention in cryptography  
research area 
o  Block ciphers, Stream ciphers,  

Hash functions, MAC, etc. 

•  Lightweight block ciphers are  
standardized in ISO/IEC 29192-2  
o  PRESENT(64-bit) and CLEFIA(128-bit) 

•  Designed for constrained devices 
o  Mostly optimized for H/W implementation 

•  Gate area, power and energy consumption 

o  S/W performance evaluated on low-end platforms 
•  Low memory requirements and small code size 
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•  Most lightweight block ciphers do not show good 
throughput in software on high-end platforms 
o  No use cases identified 
o  Low priority in design criteria 

•  Bitslice implementation (Biham, 1997) 
o  Simulates H/W implementation in S/W program 
o  Uses logical instructions corresponding to H/W logical gates 

•  Expected to improve S/W performance of small ciphers 
o  Resistant to cache timing attacks  

•  Also prevents cross-VM attacks in multi-tenant cloud 
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Our aim 
To explore S/W performance of lightweight block ciphers  

using bitslice implementation 



•  64-bit lightweight block ciphers 
o  PRESENT (Bogdanov et al, CHES2007) 

•  Standardized in ISO/IEC 29192-2 
•  Substitution-Permutation Network (SPN) 

o  Piccolo (Shibutani et al, CHES2011) 
•  Generalized Feistel Networks (GFN) 

•  Our Implementation approach 
o  Reduce the degree of parallelism of bitslice implementation  

for performance and more applications 
•  PRESENT 8, 16 and 32 parallel 
•  Piccolo 16 parallel 
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•  Intel microarchitectures (w/ SIMD instructions) 
o  Core (45nm) and Nehalem (SSSE3 and SSE4) 

•  16 128-bit XMM registers 
•  Shuffle and unpack instructions 

o  Sandy Bridge (AVX) 
•  128-bit XMM registers are extended to 256-bit YMM registers 
•  Not fully supports for integer instructions on YMM registers 
•  3-operand syntax 

o  SSE:    pxor   xmm1, xmm2   (xmm1 ^= xmm2) 
o  AVX:   vpxor   xmm1, xmm2, xmm3   (xmm1 = xmm2 ^ xmm3) 

•  In our implementation 
o  Using 128-bit AVX working on XMM registers (3-operand syntax) 
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•  2 bitsliced representations (1st/2nd) 
o  To skip pLayer every other round 

•  pLayer for 1st bitslice rep.  
o  Conversion from 1st  to 2nd rep. 
o  Register renaming (No cost) 

•  pLayer for 2nd bitslice rep. 
o  Conversion from 2nd  to 1st rep.   
o  Uses shuffle and unpack instructions 

•  52 instructions with SSE 
•  36 instructions with 128-bit AVX 
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•  Using logical representation equivalent to 4-bit S-box 
o  14 instructions (Courtois et al, 2011)  

•  Assuming 3-operand syntax with 8 registers 
•  Used in 8/16-block parallel implementations with 128-bit AVX 

o  20 instructions (Our result based on Osvik’s method) 
•  Assuming 2-operand syntax with 5 registers 
•  Used in the other implementations 
•  Reduced to17 with 128-bit AVX 
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•  Diffusion Matrix M 
o  25 instructions (using 8 reg.)	
 

•  Based on Käsper’s  impl. (CHES2009) 

o  2 matrices can be computed at once 
•  Rotation by 16-bit using pshufb 

•  4-bit S-box S 

o  13 instructions (using 5 reg.) 
•  Same approach as PRESENT S-box 
•  Reduced to 11 with 128-bit AVX	
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•  Standard implementation 
o  8 instructions applying pshufb 
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•  Remove RP 
o  Saves 200 instructions for 80-bit key 
o  Need to modify F-functions 

•  F-functions F’  on 2nd, 4th  round 
o  Same S-box calculation 
o  New matrix rep. 

•  No penalty with SSE 
•  4 more inst. with AVX 

•  No effect on 3rd round 
o  Need to align round keys 
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PRESENT-80/128 
32-block parallel	
 

SSE 128-bit AVX	
 

addRoundKey	
 512	
 512	
 

sBoxLayer	
 2604	
 2232	
 

pLayer	
 780	
 540	
 

Conversion	
 550	
 468	
 

Total	
 4446	
 3752	
 

23	
 

Piccolo -80 
16-block parallel	
 

SSE	
 128-bit AVX	
 

Diffusion matrix	
 625	
 573	
 

S-box	
 650	
 550	
 

addRK/WK	
 308	
 208	
 

Conversion	
 232	
 200	
 

Total	
 1815	
 1531 
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cf. AES-CTR (8-block parallel)   6.92 cycles/byte @ Core i7 920 (Nehalem)  
                                                                                             [Käsper et al. CHES2009] 



•  Can lightweight block ciphers with smaller gate size 
achieve better S/W performance by bitslicing ? 
o  Relationship is not trivial and depends on several factors 

•  Algorithm of target cipher 
•  Implementation approach 
•  Target platform 

o  Results of other lightweight block ciphers  
(Non-bitslice implementation) 
•  LED-64 (Guo et al., CHES 2011) 

o  57 cycles/byte on Core i7 Q720 

•  TWINE (Suzaki et al., SAC 2012) 
o  4.77 cycles/byte on Core i5 U560 
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•  We showed great potential of lightweight cryptography 
in fast S/W implementation on high-end platforms by 
exploiting bitslice implementation 
o  On Sandy Bridge: 

•  PRESENT-80/128  4.73 cycles/byte 
•  Piccolo-80   4.57 cycles/byte 

o  On Nehalem: Faster results than the S/W record of AES 

•  Lightweight cryptography is not limited to constrained 
devices. Open the way to cloud computing! 
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