On the Implementation of Secure Symmetric Multi-Party Communication in a Game-Theoretic Setting using $877.5 + O(R)$ GE

CHES 2011 Rump Session, Nara, Japan

September 30, 2011

David Oswald
Chair for Embedded Security, Ruhr-University Bochum
Goals

• Distributed *multi-party* computation
• Game-theoretic setting
• *High* performance
• *Minimum* hardware footprint
 ⇒ **Use AES**
• Prevent side-channel analysis => tamper-proof
Proposed hardware platform

Game-theoretic!
Employed MCU: 6502
6502: Benefits

• Gate-level simulator in JavaScript: http://www.visual6502.org/

• Simplicity:

 “An Intel Core 2 chip has hundreds of millions of transistors. The 6502 had 3,510, and an engineer — a person, not a computer — had to draw each one by hand to lay out the chip. Mainly it was a single engineer, Bill Mensch”

• Wide-spread
6502: Wide-spread, established platform
Our implementation

• Open source **AES** in 6502 assembly:

 .ROUNDS: inc ROUND
 jsr SUBBYTES
 jsr SHIFTROWS
 jsr MIXCOLUMNS
 jsr ADDROUNDKEY
 jsr UPDATEKEY
 jsr PRINTSTATE
 lda ROUND
 cmp #9 ; count ?= 9
 bne .ROUNDS ; if count != 12 goto loop

• On *single* 6502 + some RAM \(\Rightarrow \frac{3510}{4} + O(R) \) GE

• **Live demo**
Thanks!

Questions?

David Oswald
Chair for Embedded Security, Ruhr-University Bochum