

RUHR-UNIVERSITÄT BOCHUM

On the Implementation of Secure Symmetric Multi-Party Communication in a Game-Theoretic Setting using 877.5 + O(R) GE

CHES 2011 Rump Session, Nara, Japan September 30, 2011

David Oswald

Chair for Embedded Security, Ruhr-University Bochum

Goals

- Distributed multi-party computation
- Game-theoretic setting
- High performance
- Minimum hardware footprint

\Rightarrow Use AES

Prevent side-channel analysis => tamper-proof

Chair for Embedded Security
David Oswald

Employed MCU: 6502

- Gate-level simulator in JavaScript: http://www.visual6502.org/
- Simplicity:

"An Intel Core 2 chip has hundreds of millions of transistors. The 6502 had 3,510, and an engineer — a person, not a computer — had to draw each one by hand to lay out the chip. Mainly it was a single engineer, Bill Mensch"

Wide-spread

RUB

6502: Wide-spread, established platform

David Oswald

Open source AES in 6502 assembly:

```
.ROUNDS: inc ROUND
jsr SUBBYTES
jsr SHIFTROWS
jsr MIXCOLUMNS
jsr ADDROUNDKEY
jsr UPDATEKEY
jsr PRINTSTATE
lda ROUND
cmp #9 ; count ?= 9
bne .ROUNDS ; if count != 12 goto loop
```

- On single 6502 + some RAM \Rightarrow $^{3510}/_4 + O(R)$ GE
- Live demo

Thanks! Questions?

David Oswald

Chair for Embedded Security, Ruhr-University Bochum

