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Power Leakage

The attacker aims at recovering the value of d (or a part thereof)
from power traces corresponding to the computation Q = [d]P

Algorithm 1 Montgomery ladder

Input: Pc E(Fp) and d=(1,dy_3,...,dp)2 €N
Output: Q = [d]P

1: Ro <+ P; Ry < [2]P

2: for j=(¢—2 down to 0 do

3 b%dj; Ri_p+ Ri_p+Rp
4: Ry < [2]Rp
5
6

: end for
: return Ry
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DPA-type Attack

mletd=(dy1,dy2,...,do)2
m At step j, the attacker

m already knows bits d;_4,d;_,...,dj 1
m guesses that next bit d; =1
m chooses t random points Py,...,P: and computes

Xi = [(dr—1,dp—2,...,dj1,dj)2]P; for 1<i<t
H prepares two sets

o =1{P;i | 8(X;) =0} and .77 = {P; | g(X;) = 1}

0 thend;=0
if (€(1))1<ice — (€(i
m | if (4(7)) <ist { (')>;<6§ {%0 then d; = 1

m [terate the attack to find d;_4,...
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Protecting Against DPA

m Known DPA-type attacks require that

HE the crypto-device computes Q = [d]P for a fixed d
the attacker is able to evaluate

9(X;) with X; = [(d;—1,d;2,...,dj1,d})2]Ps

m randomization techniques aim at disabling the attacker to
evaluate g(X;)
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This Talk

Goal

Study of randomization techniques as a countermeasure against
DPA-type attacks

m coordinate blinding
m prime fields
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Randomizing Scalar d

m Blinding method
m #E=hnand ordeg(P) =n
md =d+rn
Q=[d'|P
m Recoding method
m signed-digit representations are not unique
m for a random representation of d, say d*, Q = [d*]P
m Splitting methods
H additive: Q =[d—r]P+[r]P
multiplicative: Q =[dr~" (mod n)]([r]P)
Euclidean: d = |d/r|r+(d mod r)

= Q= [dmod rlP+ [|d/r|]([r]P)
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Randomizing Point P

m Point blinding
m let S =[d]R for a secret point R

Q=[d|(R+P)-5S

m pair (R,S) in EEPROM is updated by ([t]R,[t]S) for a (small)
random t
m Randomized initial point

m in the right-to-left scalar multiplication algorithms the
accumulator, Ry is initialized with O
m if the initial point is a random point, say T, intermediate
information will be randomized
(of course, at the end of the computation, T should be subtracted
to get the correct result)

m Drawbacks

m storage of (R,S)

m generation of T (or its storage) technicol
ecnnicolor
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Randomized Projective Coordinates

m Let P=(x1,y1)
m Homogeneous coordinates

Q =[d](6xq1: Oyy:0) forarandom 6 #0
m Jacobian coordinates

Q = [d](6%x; : 63y, : ) for a random 6 # 0

technicolor

o D L |




Randomized Curve Isomorphisms

mletE:y?=x}+ax+bandE :y2=x3+dx+b

PcE mult. by d

wl Lp
Pep M9, o _[gP e F

— Q=0 '([dIP") with Q' = ¢(P)

Q=I[dPcE
—1

m Isomorphisms given by

(PZE—)EI,P (X17y1)'_>P, ( X1,U y1)
oV E = E, P =(x},y;) — P=(utx;,u’y})

and @ =u“aand b’ = u b for a random u+#0
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Randomizing Point P: Comparison

Randomized curve isomorphisms technique (RCI)

m is mostly dedicated to left-to-right point multiplication
algorithms

m it allows the use of mixed point addition (i.e., Z; = 1)
m makes parameter a random (large)
m the fastest doubling formula with a = —3 cannot be used

Randomized projective coordinates technique (RPC)

m is mainly useful for right-to-left point multiplication
algorithms
m does modify the value of a

Can we generalize the approach?
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Coordinate Blinding

m Define the map ¢ as mapping a point P = (X,Y,Z) € E to the
coordinate P’ = ®(P) where

o(P)= (XY Z)=(f*X,f'Y,Z)

for an arbitrary f € Fp\ {0} and some small integers p and v

m Algorithms for addition and doubling operations are then
redefined such that R =P +Q’

E P is not necessarily in E

inverse of ® can be computed without inverting f since
Jacobian: P =&~ 1(P) = (fH+2vX/ fIut2vy’ futvz)
Homogeneous: P =& (P) = (f'X',f*Y' fitvZ) .
technicolor
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Jacobian Coordinates: Addition Algorithm

m For R=P+Q, redefine the addition algorithm such that
®R)=R =P +Q' =o(P)+9(Q)
m Let the coordinates R’ = (X},Y},73), P = (X},Y},Z1) and
Q' =(X3.Y3.22)
mIfP#£Q:
M=Z1% d=25% A=XA, =X,
As=YiZohy, Ae=YiZihy, Az=As—A3, Ag=(247)%,
Ao =728, Mo=2(A6—%s), A1 =2A32s,
Xy =2 20 = Ao — 2041 Yy = Aio(A1 —X5) — 2459
Zy=((Z1+ )" — M — )Nz

m This requires an extra multiplication in I,
m Note this requires 3u >2v sachricolor
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Jacobian Coordinates: Doubling Algorithm

milfP=Q:

M=X2 =Y =A% M=
A5 =2((X;+22) =M —43), Ag=3A+af A4,
Ay =2 =205, Xy=127, Yi=["""Ae(As — A7) — 83,
=Y\ +Z1) = — M4

m This requires an extra two multiplications in [
m Note this requires 3u <2v
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Jacobian Coordinates: Doubling Algorithm (a = —3)

mifP=Qanda=-3:
M=Z2, =Y =Xk, A=f"h,
A5 =3(X] — Ag)(Xi +Ag), Xy =f2" 25" — 81,
Y; = 2 A5 (403 — X5) — 8%, Zz = (Yi+Z1)E — A — M

m This requires an extra three multiplications in [
m Note this requires 3u <2v
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Homogeneous Coordinates: Addition Algorithm

m Likewise with homogeneous coordinates

miIfP£Q:
M=Y1Zy, W=XZy, B=L1, I=YyZi—Mk,
A=A, Ae=XpZi—Da, Ar=A¢", Ag=lels,
Ao =27d2, Mo=[""?2AsA3 —Ag — 229,
X3=2A6Mo, Y3 =2A4(Ao—A10) —Agh1, Z3=AgA3

m This requires an extra multiplication in [Fp,
m Note this requires 3u >2v
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Homogeneous Coordinates: Doubling Algorithm

miIfP=Q:
M=X?2 A=Z2 A=af*+3M, As=2Y|Zi,
As =M, Ae=2ads, A7=Yiks, Ag=27,
Ao = (X; +A7)2 — A1 — A, Ao = 2V A3% — 209X} = Aola,
Y3 =f"" 3% —A10) - 228, Z3 =1
mIfP=Qanda=-3:
Ao=1"Z1, M =3(X{—A)Xi+Ah), A& =2YiZy,
M=2% M=kl A=Yl A=A,
A7 =2UiAs, Ag =" HP =227, Xy=Ishy
Yy ="M (A — 28) — 206, Z3 =4

m This requires an extra two (three) multiplications in [,
m Note this requires 3u <2v technicolor
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Choosing Parameters u and v

m Given the constraints a good choice for u and v would satisfy
3u=2v
m addition algorithms then requires no extra multiplication
m doubling algorithms require one multiplication with
af?t,
or one extra with f# if a= -3
(for both Jacobian and homogeneous coordinates)

m For (u,v)=(2,3), resulting algorithms are equivalent to
choosing a curve isomorphism given by

IVE;E* P:(X,y)F—)P*:(fZX,fo)
' |0—0
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Montgomery Multiplication

m Implementing these operations will typically make use of
Montgomery multiplication

Algorithm 2 Montgomery multiplication

InPUt: m = (mn717"'7m1am0)b! X = (Xn71a"'ax17xo)b)
Y= (Yn-1,---.¥1,Yo)p With 0 <x,y <m, R=0Db",
gcd(m,b) =1and m' = —m~" mod b

Output: A=xyR " mod m

1: A«0

2: fori=0ton—1do

3: uj < (ap+x;y¥o)m’ mod b

4 A+ (A+x;y+u;m)/b

5

6

: end for
cifA>mthenA<—~A—m
7: return A

m requires n(2n+2) single-precision multiplications
technicolor
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Montgomery Multiplication with a Word

m Assume x =xg < b

Algorithm 3 Montgomery mult. with a word

Input: m = (m,_q,...,my,mp)p, Xo € {0,...,b—1},
Y =(Yn-1,---,¥1,Y0)p With 0 <y <m, gcd(m,b) =
1and m = —m~" mod b

Output: A=xoyb ' mod m

U+ Xoyom' mod b

A+ (xoy+um)/b
ifA>mthen A< A—m
return A

A W N =

m requires 2n+ 2 single-precision multiplications
m result is multiplied by b~ mod m
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Montgomery Multiplication with f

m Define the random value that is used to be
f'=bf (mod m)

with f € {1,....b—1} and f € F,\ {0}

m in practice this means f’ is a random value in {1,....b—1}
m multiplying with f costs 2n+ 2 single multiplications and
multiplying with f* costs (2n+2)u single multiplications

m (This could equally be used to efficiently randomize the
representation of a projective coordinate)
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Summary

m Conceptually simple blinding method for implementing scalar
multiplication over WeierstraB curves

m shown to be equivalent to the curve isomorphisms for some
parameters

m Details on how to efficiently implement this countermeasure

m Montgomery multiplication
E (can be applied to other existing countermeasures)
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Questions?
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