
Coordinate Blinding over Prime Fields

Michael Tunstall � Marc Joye

Coordinate Blinding over Prime Fields

Michael Tunstall � Marc Joye

Power Leakage

The attacker aims at recovering the value of d (or a part thereof)
from power traces corresponding to the computation QQQ = [d]PPP

Algorithm 1 Montgomery ladder
Input: PPP ∈ E(Fp) and d = (1,d`−2, . . . ,d0)2 ∈ N
Output: QQQ = [d]PPP

1: R0R0R0← PPP; R1R1R1← [2]PPP
2: for j = `−2 down to 0 do
3: b← dj; R1−bR1−bR1−b← R1−bR1−bR1−b +RbRbRb
4: RbRbRb← [2]RbRbRb
5: end for
6: return R0R0R0

2 / 23

DPA-type Attack

Let d = (d`−1,d`−2, . . . ,d0)2

At step j, the attacker
already knows bits d`−1,d`−2, . . . ,dj+1
guesses that next bit dj = 1
chooses t random points P1P1P1, . . . ,PtPtPt and computes

XiXiXi = [(d`−1,d`−2, . . . ,dj+1,dj)2]PiPiPi for 16 i6 t

prepares two sets

S0 = {PiPiPi | g(XiXiXi) = 0} and S1 = {PiPiPi | g(XiXiXi) = 1}

if 〈C (i)〉16i6t
PiPiPi∈S0

−〈C (i)〉16i6t
PiPiPi∈S1

{
≈ 0 then dj = 0
6≈ 0 then dj = 1

Iterate the attack to find dj−1, . . .

3 / 23

Protecting Against DPA

Known DPA-type attacks require that
1 the crypto-device computes QQQ = [d]PPP for a fixed d
2 the attacker is able to evaluate

g(XiXiXi) with XiXiXi = [(d`−1,d`−2, . . . ,dj+1,dj)2]PiPiPi

randomization techniques aim at disabling the attacker to
evaluate g(XiXiXi)

4 / 23

This Talk

Goal
Study of randomization techniques as a countermeasure against
DPA-type attacks

coordinate blinding

prime fields

5 / 23

Outline

1 Randomization Techniques
Scalar randomization
Point randomization

2 Coordinate Blinding
Principle
Jacobian coordinates
Homogeneous coordinates

3 Implementation
Selecting the parameters
Montgomery multiplication

4 Conclusion

6 / 23

Outline

1 Randomization Techniques
Scalar randomization
Point randomization

2 Coordinate Blinding
Principle
Jacobian coordinates
Homogeneous coordinates

3 Implementation
Selecting the parameters
Montgomery multiplication

4 Conclusion

Randomizing Scalar d

Blinding method
#E = hn and ordE(PPP) = n
d∗ = d+ rn

QQQ = [d∗]PPP

Recoding method
signed-digit representations are not unique
for a random representation of d, say d∗, QQQ = [d∗]PPP

Splitting methods
1 additive: QQQ = [d− r]PPP+ [r]PPP
2 multiplicative: QQQ = [dr−1 (mod n)]

(
[r]PPP
)

3 Euclidean: d = bd/rcr+ (d mod r)

=⇒ QQQ = [d mod r]PPP+
[
bd/rc

](
[r]PPP
)

7 / 23

Randomizing Point PPP

Point blinding
let SSS = [d]RRR for a secret point RRR

QQQ = [d](RRR+PPP)−SSS

pair (RRR,SSS) in EEPROM is updated by ([t]RRR, [t]SSS) for a (small)
random t

Randomized initial point
in the right-to-left scalar multiplication algorithms the
accumulator, R0R0R0 is initialized with OOO
if the initial point is a random point, say TTT, intermediate
information will be randomized

(of course, at the end of the computation, TTT should be subtracted
to get the correct result)

Drawbacks
storage of (RRR,SSS)
generation of TTT (or its storage)

8 / 23

Randomized Projective Coordinates

Let PPP = (x1,y1)

Homogeneous coordinates

QQQ = [d](θx1 : θy1 : θ) for a random θ 6= 0

Jacobian coordinates

QQQ = [d](θ
2x1 : θ

3y1 : θ) for a random θ 6= 0

9 / 23

Randomized Curve Isomorphisms

Let E : y2 = x3 +ax+b and E′ : y2 = x3 +a′x+b

PPP ∈ E
mult. by d−−−−−−−−→ QQQ = [d]PPP ∈ E

ϕ

y xϕ−1

P′P′P′ ∈ E′
mult. by d−−−−−−−−→ Q ′Q ′Q ′ = [d]P′P′P′ ∈ E′

=⇒ QQQ = ϕ−1
(
[d]P′P′P′

)
with Q ′Q ′Q ′ = ϕ(PPP)

Isomorphisms given by{
ϕ : E→ E′, PPP = (x1,y1) 7→ P′P′P′ = (u−2x1,u−3y1)

ϕ−1 : E′→ E, P′P′P′ = (x′1,y
′
1) 7→ PPP = (u2x′1,u

3y′1)

and a′ = u−4a and b′ = u−6b for a random u 6= 0

10 / 23

Randomizing Point PPP: Comparison

Randomized curve isomorphisms technique (RCI)
is mostly dedicated to left-to-right point multiplication
algorithms

it allows the use of mixed point addition (i.e., Z2 = 1)
makes parameter a random (large)

the fastest doubling formula with a =−3 cannot be used

Randomized projective coordinates technique (RPC)
is mainly useful for right-to-left point multiplication
algorithms
does modify the value of a

Can we generalize the approach?

11 / 23

Outline

1 Randomization Techniques
Scalar randomization
Point randomization

2 Coordinate Blinding
Principle
Jacobian coordinates
Homogeneous coordinates

3 Implementation
Selecting the parameters
Montgomery multiplication

4 Conclusion

Coordinate Blinding

Principle

Define the map Φ as mapping a point PPP = (X,Y,Z) ∈ E to the
coordinate P′P′P′ = Φ(PPP) where

Φ(PPP) = (X ′,Y ′,Z) = (fµX,fνY,Z)

for an arbitrary f ∈ Fp \{0} and some small integers µ and ν

Algorithms for addition and doubling operations are then
redefined such that R′R′R′ = P′P′P′+Q ′Q ′Q ′

1 P′P′P′ is not necessarily in E

2 inverse of Φ can be computed without inverting f since
Jacobian: PPP = Φ−1(P′P′P′) = (fµ+2νX ′,f3µ+2νY ′,fµ+νZ)

Homogeneous: PPP = Φ−1(P′P′P′) = (fνX ′,fµY ′,fµ+νZ)

12 / 23

Jacobian Coordinates: Addition Algorithm

For RRR = PPP+QQQ, redefine the addition algorithm such that
Φ(RRR) = R′R′R′ = P′P′P′+Q ′Q ′Q ′ = Φ(PPP) + Φ(QQQ)

Let the coordinates R′R′R′ = (X ′3,Y
′
3,Z3), P′P′P′ = (X ′1,Y

′
1,Z1) and

Q ′Q ′Q ′ = (X ′2,Y
′
2,Z2)

If PPP 6=QQQ:

λ1 = Z1
2, λ2 = Z2

2, λ3 = X ′1λ2, λ4 = X ′2λ1,

λ5 = Y ′1Z2λ2, λ6 = Y ′2Z1λ1, λ7 = λ4−λ3, λ8 = (2λ7)2,

λ9 = λ7λ8, λ10 = 2(λ6−λ5), λ11 = λ3λ8,

X ′3 = f3µ−2ν
λ10

2−λ9−2λ11 Y ′3 = λ10(λ11−X ′3)−2λ5λ9

Z3 = ((Z1 +Z2)2−λ1−λ2)λ7

This requires an extra multiplication in Fp
Note this requires 3µ > 2ν

13 / 23

Jacobian Coordinates: Doubling Algorithm

If PPP =QQQ:

λ1 = X ′1
2
, λ2 = Y ′1

2
, λ3 = λ2

2, λ4 = Z1
2,

λ5 = 2((X ′1 + λ2)2−λ1−λ3), λ6 = 3λ1 +af2µ
λ4

2,

λ7 = f2ν−3µ
λ6

2−2λ5, X ′3 = λ7, Y ′3 = f2ν−3µ
λ6(λ5−λ7)−8λ3,

Z3 = (Y ′1 +Z1)2−λ2−λ4

This requires an extra two multiplications in Fp
Note this requires 3µ 6 2ν

14 / 23

Jacobian Coordinates: Doubling Algorithm (a=−3)

If PPP =QQQ and a =−3 :

λ1 = Z1
2, λ2 = Y ′1

2
, λ3 = X ′1λ2, λ4 = fµ

λ1,

λ5 = 3(X ′1−λ4)(X ′1 + λ4), X ′3 = f2ν−3µ
λ5

2−8λ3,

Y ′3 = f2ν−3µ
λ5(4λ3−X ′3)−8λ2

2, Z3 = (Y ′1 +Z1)2−λ2−λ1

This requires an extra three multiplications in Fp
Note this requires 3µ 6 2ν

15 / 23

Homogeneous Coordinates: Addition Algorithm

Likewise with homogeneous coordinates

If PPP 6=QQQ:

λ1 = Y ′1Z2, λ2 = X ′1Z2, λ3 = Z1Z2, λ4 = Y ′2Z1−λ1,

λ5 = λ4
2, λ6 = X ′2Z1−λ2, λ7 = λ6

2, λ8 = λ6λ7,

λ9 = λ7λ2, λ10 = f3µ−2ν
λ5λ3−λ8−2λ9,

X ′3 = λ6λ10, Y ′3 = λ4(λ9−λ10)−λ8λ1, Z3 = λ8λ3

This requires an extra multiplication in Fp
Note this requires 3µ > 2ν

16 / 23

Homogeneous Coordinates: Doubling Algorithm

If PPP =QQQ:

λ1 = X ′1
2
, λ2 = Z1

2, λ3 = af2µ
λ2 + 3λ1, λ4 = 2Y ′1Z1,

λ5 = λ4
2, λ6 = λ4λ5, λ7 = Y ′1λ4, λ8 = λ7

2,

λ9 = (X ′1 + λ7)2−λ1−λ8,λ10 = f2ν−3µ
λ3

2−2λ9X ′3 = λ10λ4,

Y ′3 = f2ν−3µ
λ3(λ9−λ10)−2λ8, Z3 = λ6

If PPP =QQQ and a =−3:

λ0 = fµZ1, λ1 = 3(X ′1−λ0)(X ′1 + λ0), λ2 = 2Y ′1Z1,

λ3 = λ2
2, λ4 = λ2λ3, λ5 = Y ′1λ2, λ6 = λ5

2,

λ7 = 2X ′1λ5, λ8 = f2ν−3µ
λ1

2−2λ7, X ′3 = λ8λ2

Y ′3 = f2ν−3µ
λ1(λ7−λ8)−2λ6, Z3 = λ4

This requires an extra two (three) multiplications in Fp
Note this requires 3µ 6 2ν

17 / 23

Outline

1 Randomization Techniques
Scalar randomization
Point randomization

2 Coordinate Blinding
Principle
Jacobian coordinates
Homogeneous coordinates

3 Implementation
Selecting the parameters
Montgomery multiplication

4 Conclusion

Choosing Parameters µ and ν

Given the constraints a good choice for µ and ν would satisfy
3µ = 2ν

addition algorithms then requires no extra multiplication
doubling algorithms require one multiplication with

af2µ ,
or one extra with fµ if a =−3

(for both Jacobian and homogeneous coordinates)

For (µ,ν) = (2,3), resulting algorithms are equivalent to
choosing a curve isomorphism given by

ψ : E ∼→ E∗ :

{
PPP = (x,y) 7→ P∗P∗P∗ = (f2 x,f3 y)

OOO 7→OOO

18 / 23

Montgomery Multiplication

Implementing these operations will typically make use of
Montgomery multiplication

Algorithm 2 Montgomery multiplication
Input: m = (mn−1, . . . ,m1,m0)b, x = (xn−1, . . . ,x1,x0)b,

y = (yn−1, . . . ,y1,y0)b with 0 6 x,y < m, R = bn,
gcd(m,b) = 1 and m′ =−m−1 mod b

Output: A = xyR−1 mod m

1: A← 0
2: for i = 0 to n−1 do
3: ui← (a0 +xi y0)m′ mod b
4: A← (A+xi y+uim)/b
5: end for
6: if A>m then A← A−m
7: return A

requires n(2n+ 2) single-precision multiplications

19 / 23

Montgomery Multiplication with a Word

Assume x = x0 < b

Algorithm 3 Montgomery mult. with a word
Input: m = (mn−1, . . . ,m1,m0)b, x0 ∈ {0, . . . ,b− 1},

y = (yn−1, . . . ,y1,y0)b with 06 y <m, gcd(m,b) =
1 and m′ =−m−1 mod b

Output: A = x0 yb−1 mod m

1: u← x0 y0m′ mod b
2: A← (x0 y+um)/b
3: if A>m then A← A−m
4: return A

requires 2n+ 2 single-precision multiplications
result is multiplied by b−1 mod m

20 / 23

Montgomery Multiplication with f

Define the random value that is used to be

f′ ≡ bf (mod m)

with f′ ∈ {1, . . . ,b−1} and f ∈ Fp \{0}
in practice this means f′ is a random value in {1, . . . ,b−1}
multiplying with f costs 2n+ 2 single multiplications and
multiplying with fµ costs (2n+ 2)µ single multiplications

(This could equally be used to efficiently randomize the
representation of a projective coordinate)

21 / 23

Outline

1 Randomization Techniques
Scalar randomization
Point randomization

2 Coordinate Blinding
Principle
Jacobian coordinates
Homogeneous coordinates

3 Implementation
Selecting the parameters
Montgomery multiplication

4 Conclusion

Summary

Conceptually simple blinding method for implementing scalar
multiplication over Weierstraß curves

shown to be equivalent to the curve isomorphisms for some
parameters

Details on how to efficiently implement this countermeasure
Montgomery multiplication
(can be applied to other existing countermeasures)

22 / 23

Questions?

23 / 23

	Randomization Techniques
	Scalar randomization
	Point randomization

	Coordinate Blinding
	Principle
	Jacobian coordinates
	Homogeneous coordinates

	Implementation
	Selecting the parameters
	Montgomery multiplication

	Conclusion

