

eXternal Benchmarking eXtension
for the SUPERCOP

crypto benchmarking framework

CHES 2010, August 17-20, Santa Barbara, UCSB
Christian Wenzel-Benner, ITK Engineering AG

Jens Gräf, LiNetCo GmbH

Slides Overview

 Introduction
 Motivation
 Design Goals

 System Overview
 Hardware
 Software

 Reviewer Comments
 Example Benchmark Results
 Present & Future

Introduction

Motivation

 Big demand for benchmarking in crypto
 For speed, and for embedded applications also size

 Reproducibility is very important
 Compiler versions and flags must be logged
 Benchmarking method must be well specified
 Setup should be cheap so others can replicate it

 SUPERCOP addresses most of the above
 XBX adds benchmarking for size
 XBX allows to benchmark small devices

Design Goals

1. Automatic testing by scripts

2. Precise, real world performance numbers

3. Free source code for others to inspect

4. Cheap, easily available hardware

5. SUPERCOP input compatible

6. SUPERCOP output compatible

7. Development with pre-owned and/or free tools

8. Heavy component re-use

9. Focus on SUPERCOP-eBASH

System Overview

Hardware

XBH

XBD

RS232

ETH

PWR

RS232

P
W

R

Timing
Reset
Data

Hardware

 Personal Computer
 Needs Ethernet, RS232 recommended

 XBH, eXternal Benchmarking Harness
 Ethernet (TCP) to PC
 RS232 to PC for configuration and debug
 Digital I/O Pins to XBD (Timing, Reset)
 Data to/from XBD: I²C, UART or Ethernet (UDP)

 XBD, eXternal Benchmarking Device
 Digital I/O Pins to XBH (Timing, Reset)
 Data to/from XBH: I²C, UART or Ethernet (UDP)

Hardware

NSLU2
NAS

appliance
LED

(green)

Phototransistor

Comparator
circuit

Timing signal
to XBH

Software

 Designed to closely emulate SUPERCOP
 Builds binaries from algorithms under test

 Using different implementations
 Using different compiler options
 Using different compilers if available

 Tests binaries (try phase)
 Execute a known-answer checksum test
 Verify the result, flag broken binaries
 Measure and log the time the operation needs
 Measure and log stack usage

Software

 Tests binaries (measure phase)
 Fastest implementation-compiler-options triple per

algorithm is subjected to detailed benchmarking
 Using different input/plaintext sizes

 Reports results
 Detailed timings from measure phase
 Static sizes from binary files (e.g. ELF,COFF)
 Stack usage from the try phase
 Generate best-of lists: Speed, RAM, ROM

Software

Software

 PC-based XBX software
 Mostly Perl scripts
 Some Bash scripts
 SQLite for results analysis

 XBH software
 C, some assembler

 XBD software
 C, some assembler on small targets, some bash on

embedded linux targets

Reviewer Comments

Reviewer Comments

 Why do you not use a XBH external clock pin to
clock the XBD? This would give you the best
timing accuracy.

➔ Yes, it would. Drawbacks would be:
 None for self-designed AVR boards
 Crystal removal and voltage level shifting for most

(3.3V) microcontroller eval boards
 Same for commandeered routers or NAS devices
 Some on-chip oscillators and/or PLLs might not

work with externally applied clock

Reviewer Comments

 What about a multi XBD capable XBH, where
you can switch between the desired target
platform?

➔ Feasible, but not with an ATmega644 due to
limited RAM, I/O and timer resources
 Could do it with a modern 32bit microcontroller
 Current XBH has a €40 pricetag incl. accessories

➔ Current solution is the ”XBX farm”
 Severals XBH-XBD pairs, each with own IP
 One Linux PC, XBX software plus ”farm” scripts

Example Benchmark Results

Hamsi, Speed

Platform 8 Bytes 64 Bytes 512 Bytes 1024 Bytes 2048 Bytes Compiler
lm3s811-evb 329483 3874 696 272 220 216 214 212

fritzbox-7170 399196 52391 7009 1172 347 283 250 218
artila_m501 413696 19485 2734 585 304 278 272 266

nslu2-openwrt 475957 26667 3780 798 387 334 297 261

8312273 89949 16595 6758 5529 5441 5397 5353

8312293 89950 16595 6758 5529 5441 5397 5353

Try Cycles
(1536)

Empty
Message

Long
Messages

arm-elf-gcc -O2
mips-uclib-gcc -O2
arm-artila-gcc -O1

armeb-uclibc-gcc -O1
atmega1281_1

6mhz avr-gcc 1281 -O3
atmega1284p_

16mhz avr-gcc 1284p -O3

Present & Future

Present

 Fully automated benchmarks, speed and size
 XBD communication by I²C, UART or Ethernet
 Four XBD families currently supported

 Atmel ATmega
 Artila M501 (ARM 920T)
 NSLU2 (Intel XScale, ARMv5te)
 Fritz!Box 7170 (Texas Instruments AR7, MIPS)

 Website: https://xbx.das-labor.org/trac/wiki
 Peer-reviewed paper

https://xbx.das-labor.org/trac/wiki

Future

 Comprehensive hardware documentation
 User's Guide
 More XBDs
 XBD power benchmarking

 Voltage & Current measurement
 Will require power management on XBD

 More SUPERCOP: ciphers, signatures...
 FPGA boards as XBDs

Thank You!

Questions, Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

