Developing a Hardware Evaluation Method for SHA-3 Candidates

Luca Henzen, Pietro Gendotti, Patrice Guillet, Enrico Pargaetzi, Martin Zoller, and Frank K. Gürkaynak

CHES 2010

- 1. Introduction
- 2. Hardware evaluation methodology
- 3. Implementation
- 4. Results
- 5. Conclusions

NIST started public competition to select new standard SHA-3

Motivations

- · Digital fingerprint out of an arbitrary-length file
- · Security weaknesses found in MD5 and SHA-1
- Security concern with SHA-2

NIST SHA-3 Schedule	2008	2009	2010	2011	2012
First Round Second Round		51	14	Final (Conference
Final Round SHA-3 Winner	First C	onference Sec	ond Confei	5 ence	1

Security

· Cryptographic strength is essential

Efficiency

- Software: Several implementations in different general-purpose architectures and performance extensively investigated (eBASH)
- **Hardware**: Hardware performance comparison impractical due to different implementation technologies and lack of constrains

Flexibility

- Utilized in both high-performance and resource constrained environments
- · Good performance in terms of speed, area and power

Development of BLAKE

VLSI Implementation

- VLSI characterization of several second round candidates within student projects
- · Designs manufactured in three different ASICs
- 12 out of 14 candidate algorithms implemented (all apart from ECHO and SIMD)

Development of a methodology to evaluate ASIC implementation of all SHA-3 second round candidates

- · Optimize all algorithms for multiple clearly defined specifications
- · Apply methodology and evaluate several architectural variations
- · Openness of results

Lack of concrete hardware specifications

- Hardware specifications determined by the application
- Trade-offs between silicon area, energy consumption and throughput

Which parameters are more important?

- · Very wide range of application with different requirements
- Focus on one parameter (throughput)
- Aggregate performance metrics (throughput per mm²)

Circuit Area

- Cost of the implementation
- Net circuit area of a placed and routed design
- Reported in kilo gates equivalent (kGE)

Throughput

- · Speed of the implementation
- · Amount of input information that can be computed per second
- · Reported in Gigabits per second (Gbps)

Energy Consumption

- Energy required to generate the hash value
- Energy per bit of input information processed
- · Reported in milli Joules per Gigabit (mJ/Gbit)

Selection of algorithm parameters

NIST SHA-3 Minimum Requirements

- Message digest size of 224, 256, 384, 512-bits
- Maximum message length of $2^{64} 1$ bits

Our Requirements:

Message digest size

- Slightly different architectures for different output length
- 256-bits version for smaller hardware and faster implementation

Message block size

- Largest message block size available
- Message already padded
- Very long message for throughput calculation

Definition of algorithm specifications (I)

NIST Specifications

- · Computationally efficient
- · Limited memory requirements
- Flexible
- Simple

Separate Specifications

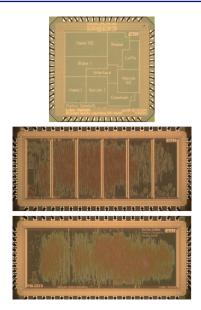
- High-Throughput and Moderate-Throughput targets
- · Fairer comparison between remaining performance metrics
- · Possible to highlight flexibility

Definition of algorithm specifications (II)

90 nm CMOS process technology by UMC

High-Throughput: 20 Gbps

- · Beyond expected performance
- Rank algorithms on maximum throughput capability and circuit area occupation


Moderate-Throughput: 0.2 Gbps

- · Easily achievable
- Rank algorithms focusing on energy consumption and circuit area occupation

ASIC realizations

Several practical factors have affected results

- Maximum available silicon area
- Total number of I/O pins
- Test infrastructure limited capabilities
- Test structures overhead (scan chains)
- Shared common interface
- Clock frequency domains
- Scheduling constrains

Re-implementation of all cores without considering found limitations

No limits on clock frequency

- Fast implementations still facing penalties for clock distribution
- Not considering crosstalk and I/O limitations

No test structures

· Any test structure required for comparison

Ideal interface

- Each algorithm need different number of I/Os
- Every function can express its maximum potentiality

No macro blocks

· For look-up tables or register files

Design flow

Front-End Design

- · Same design procedure for all candidate algorithms
- · Worst case condition characterization of standard cell libraries

	Worst Case	Typical Case	Best Case
Supply Voltage	1.08 V	1.2 V	1.32 V
Temperature	125 ℃	27 °C	-40 ℃
Critical Path	3.49 ns	2.24 ns	1.59 ns
Throughput	13.75 Gbps	21.42 Gbps	30.19 Gbps
Relative Performance	64.2%	100%	140.9%

Back-End Design

- Square floorplan
- · Set 85% of core area utilization
- · Statistical power analysis to determine energy consumption

Several architectural transformations

· Parallelization, pipelining, loop-unrolling

Different computational method to perform a specific transformation

Substitution boxes as look-up tables or as a mathematical function

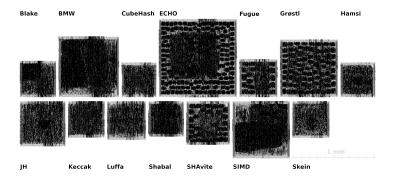
Identify the best design not a trivial task

- Large set of circuit with different trade-offs between speed and size
- · Selected the most appropriate architecture with minimal resource

Open source codes and run scripts for EDA tools

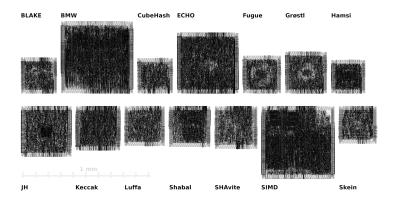
Results

Figures of Merit


- · Circuit Area
- Energy Consumption
- Maximum Clock Frequency
- Maximum Achievable Throughput
- Target Throughput Clock Frequency
- Maximum/Target Clock Frequency Ratio

Representation of the performance for high and moderate speed environments

- · Comparison to overview efficiency and flexibility
- · Refrain from concluding remarks


High-Throughput scenario 20 Gbps

- · Only two algorithms able to reach throughput target
- · Both area and energy sacrificed to achieve high-throughput
- Local congestion for 8-bit LUT-based S-boxes (ECHO, Grøstl, Fugue, SHAvite)

Moderate-Throughput scenario 0.2 Gbps

- · All circuits match target throughput easily
- · Area and energy dissipation main figure of merit
- · No special precaution for low-power design

Conflict of interest

· A co-author is involved with one candidate

Designer experience

• Different designers may be more successful than others

Accuracy of numbers

- Accuracy of synthesis and analysis tools: $\pm\,5\%$

Bias trough specification

- Design corners favor some algorithms
- · New studies with different specifications

Simplification due to assumptions

· Design flow assumptions necessary to develop the methodology

Presented a methodology to compare SHA-3 candidate algorithms

- Set limits for one performance metric (throughput)
- Re-implemented all algorithms to meet two distinct throughput requirements to compare flexibility

Difficult to present an authoritative and fair evaluation of all second round candidates

A similar approach utilized for final round evaluation

- Set clear constrains
- Target more than one performance metrics
- · Evaluation process well documented and material available
- · Addition of low-power corner

http://www.iis.ee.ethz.ch/~sha3

Measured Results

Algorithm	Area [kGE]	Throughput [Gbps]	Energy [mJ/Gbit]	Technology [nm]
BLAKE-32	33.55	7.314	15.291	UMC 90
BMW-256	95.00	3.527	31.407	UMC 180
CubeHash16/32-256	39.69	8.000	20.700	UMC 90
Fugue-256	26.00	2.806	122.506	UMC 180
Grøstl-256	65.00	4.064	73.075	UMC 180
Hamsi-256	32.25	7.467	23.624	UMC 90
Hamsi-512	68.66	7.467	46.605	UMC 90
JH-256	44.00	2.371	72.885	UMC 180
Keccak-256 [†]	27.85	39.822	5.726	UMC 90
Keccak-512 [†]	26.94	19.911	11.933	UMC 90
Luffa-256	29.70	22.400	9.482	UMC 90
Shabal-256	35.99	4.923	30.713	UMC 90
SHAvite-3 ₂₅₆	48.00	2.452	93.764	UMC 180
Skein-256-256	27.00	1.917	44.329	UMC 180

[†] First round specification.

Post-Layout results for High-Throughput scenario

Algorithm	Area [kGE]	Energy [mJ/Gbit]	Maxii Ach. Thr. [Gbps]	mum Clock Freq. [MHz]	Clock Freq. for 20 Gbps Thr. [MHz]	Max. / Target Freq. Ratio
BLAKE-32	47.5	11.00	9.752	400	820	0.49
BMW-256	150.0	16.86	8.486	298	703	0.42
CubeHash16/32-256	42.5	13.71	10.667	667	1250	0.53
ECHO-256	260.0	43.41	13.966	291	417	0.70
Fugue-256	55.0	15.60	8.815	551	1250	0.44
Grøstl-256	135.0	14.13	16.254	667	820	0.81
Hamsi-256	45.0	15.90	8.686	814	1876	0.43
JH-256	80.0	17.54	10.807	760	1406	0.54
Keccak-256	50.0	2.42	43.011	949	441	2.15
Luffa-256	55.0	6.92	23.256	727	625	1.16
Shabal-256	45.0	14.83	6.819	693	2033	0.34
SHAvite-3 ₂₅₆	75.0	19.21	7.999	562	1406	0.40
SIMD-256	135.0	35.66	5.177	364	1406	0.26
Skein-256-256	50.0	30.47	3.558	264	1484	0.18

Post-Layout results for Moderate-Throughput scenario

Algorithm	Area [kGE]	Energy [mJ/Gbit]	Max Ach. Thr. [Gbps]	imum Clock Freq. [MHz]	Clock Freq. for 0.2 Gbps Thr. [MHz]	Max. / Target Freq. Ratio
BLAKE-32	16.0	13.00	0.463	73.282	31.646	2.32
BMW-256	85.0	14.04	1.845	64.876	7.031	9.23
CubeHash16/32-256	16.0	10.50	1.741	217.581	25.000	8.70
ECHO-256	60.0	59.44	0.204	137.061	134.771	1.02
Fugue-256	19.0	9.02	1.828	114.260	12.500	9.14
Grøstl-256	25.0	22.28	0.412	128.750	62.500	2.06
Hamsi-256	15.0	35.12	0.200	150.083	149.925	1.00
JH-256	37.5	13.03	1.909	134.228	14.063	9.54
Keccak-256	27.5	5.50	6.767	149.276	4.412	33.83
Luffa-256	22.0	21.79	1.265	118.624	18.751	6.33
Shabal-256	25.0	26.57	0.399	128.634	64.475	2.00
SHAvite-3256	25.0	11.43	1.871	131.527	14.063	9.35
SIMD-256	90.0	32.49	0.943	66.295	14.063	4.71
Skein-256-256	19.0	32.67	0.200	118.765	118.765	1.00

Design specifications of the architectures (I)

Alg.	Block [bits]	Arch.	Lat. [cycles]	Implementation details
BLAKE 512		HS	21	Four parallel G function modules, anticipation of the first message-constant addition.
		MS	81	One <i>G</i> function module.
BMW	512	HS-MS	18 (+18)	f_0 and f_2 computed in one cycle, while f_1 iteratively decomposed in a single expand block.
CubeHash 256		HS	16 (+160)	Single round per cycle, initial state stored.
		MS	32 (+320)	Half round, initial state stored.
ECHO	1536	HS	32	8 AES rounds per clock cycle.
		MS	1034	Single 32-bit AES core, one parallel BigMixColumn unit.
Fugue	32	HS	2 (+37)	S-box as LUT.
- 3		MS	2 (+37)	S-box as composite field logic.
0 11	510	HS	21 (+21)	Interleaved P and Q permutation with one pipeline stage, $\textit{SubBytes}$ as LUT.
Grøstl	512	MS	160 (+160)	Single-column round (64-bit datapath), SubBytes as composite field.
Hamsi	32	HS	3 (+6)	Message expansion in three 256 $\times 256$ LUTs, single round per cycle, substitution layer as logic.
		MS	24 (+48)	Same as HS, datapath reduced to 128 bits.

Design specifications of the architectures (II)

Alg.	Block [bits]	Arch.	Lat. [cycles]	Implementation details		
JH	512	HS-MS	36	S-boxes ${\cal S}_0$ and ${\cal S}_1$ stored in LUTs, constants stored.		
Keccak	1088	HS-MS	24	Single round per cycle.		
Luffa	256	HS	8	Three parallel Step function modules, SubCrumb function as logic.		
		MS	24	One Step function modules, SubCrumb function as logic.		
Shabal 512		HS	52 (+156)	One keyed permutation round per cycle. In total, 30 adders and 16 subtractors.		
		MS	165	One adder and one subtractor only.		
SHAvite-3 512		HS	36	One AES round for message expansion and one AES round for the ${\cal F}^3$ round, ${\it SubBytes}~{\rm as}~{\rm LUT}.$		
		MS	36	Same as HS, SubBytes in composite field.		
SIMD	512	HS-MS	36 (+36) [†]	Four parallel Feistel modules, message expansion based on ${\rm NNT}_8$ and eight multipliers for tweadle mult.		
Skein	256	HS	19 (+19)	Four unrolled Threefish rounds.		
'		MS	152 (+152)	Half Threefish round.		

[†] Further 36 cycles of initialization required for message expansion.